Farklı Geçici Kron Materyallerinin Bağlanma Dayanımı Değerlerinin Karşılaştırılması

Bu çalışmada farklı geçici kron materyallerinin makaslama bağlanma dayanımı değerlerinin karşılaştırılması amaçlanmaktadır. Araştırmada Structur CAD ve polimetil metakrilat (PMMA) geçici kron materyallerinden üretilen 24 adet numune kullanılmıştır. Structur CAD grubu numuneleri yüzeyleri %35’lik jel fosforik asitle 30 sn pürüzlendirilmiş, polimetil metakrilat grubu ise 30 μm ultrafine elmas frezle aynı doğrultuda olacak şekilde 10 sn pürüzlendirilmiştir. Her iki gruptaki numunelere 0,018 slot metal braketler yapıştırılmıştır. Makaslama bağlanma dayanımı kuvvetleri testi için numuneler universal test cihazında (Shear Bond Tester) değerlendirilmiştir. İstatistiksel analiz için Mann Whitney-U testi kullanılmıştır. Structur CAD materyalinin bağlanma dayanımı ortalaması 7,45 megapaskal ve PMMA materyalinin bağlanma dayanımı ortalaması ise 3,14 megapaskal olarak gözlenmiştir. Structur CAD materyalinde gözlenen bağlanma dayanımı değeri PMMA içerikli materyale göre yüksek bulunmuş ve bu fark istatistiksel olarak anlamlı olduğu tespit edilmiştir. Ayrıca Structur CAD materyali ile elde edilen ortalama bağlanma dayanımı değeri klinik olarak kabul edilebilir sınırlar içinde olduğu gözlenmiştir.

Comparison of Different Temporary Crown Materials’ Shear Bond Strength Values

The goal of this study is to examine the shear bond strength of several temporary crown materials. 24 samples of Structur CAD and polymethyl methacrylate (PMMA) temporary crown materials were utilized in the study. The surfaces of the Structur CAD group samples were etched for 30 seconds with 35 percent gel phosphoric acid, while the polymethyl methacrylate group samples were abraded for 10 seconds with a 30 m ultrafine diamond bur in the same direction. In both groups, 0.018 slot metal brackets were bonded to the samples. The samples were tested in a universal testing device for shear bond strength (Shear Bond Tester). For statistical analysis, the Mann Whitney-U test was used. Structur CAD material had a mean bond strength of 7.45 megapascals, while PMMA material had a mean bond strength of 3.14 megapascals. The shear bond strength of the Structur CAD material was found to be higher than that of the PMMA-containing material, and the difference was statistically significant. Furthermore, the mean shear bond strength achieved with Structur CAD material was found to be within clinically acceptable limits.

___

  • 1. Gökalp S, Doğan GB, Tekçı̇ çek M, Berberoğlu A, Ünlüer Ş. Erişkin ve yaşlılarda ağız-diş sağlığı profili Türkiye-2004. Hacettepe Dişhekimliği Fakültesi Derg. 2007;31(4):11-8.
  • 2. Chow L, Goonewardene MS, Cook R, Firth MJ. Adult orthodontic retreatment: A survey of patient profiles and original treatment failings. Am J Orthod Dentofac Orthop. 2020;158(3):371-82.
  • 3. Burns DR, Beck DA Nelson SK, Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J Prosthet Dent. 2003;90(5):474-97.
  • 4. Heithersay GS. Combined endodonticorthodontic treatment of transverse root fractures in the region of the alveolar crest. Oral Surg Oral Med Oral Pathol. 1973;36(3):404-15.
  • 5. Al Jabbari YS, Al Taweel SM, Al Rifaiy M, Alqahtani MQ, Koutsoukis T, Zinelis S. Effects of surface treatment and artificial aging on the shear bond strength of orthodontic brackets bonded to four different provisional restorations. Angle Orthod. 2014;84(4):649-55.
  • 6. Richardson G, Russell KA. Congenitally missing maxillary lateral incisors and orthodontic treatment considerations for the single-tooth implant. J Can Dent Assoc. 2001;67(1):25-8.
  • 7. Blakey R, Mah J. Effects of surface conditioning on the shear bond strength of orthodontic brackets bonded to temporary polycarbonate crowns. Am J Orthod Dentofac Orthop. 2010;138(1):72-8.
  • 8. Balkenhol M, Knapp M, Ferger P, Heun U, Wöstmann B. Correlation between polymerization shrinkage and marginal fit of temporary crowns. Dent Mater. 2008;24(11):1575-84.
  • 9. Zarif Najafi H, Moradi M, Torkan S. Effect of different surface treatment methods on the shear bond strength of orthodontic brackets to temporary crowns. Int Orthod. 2019;17(1):89- 95.
  • 10. Shillingburg HT, Hobo S, Whitsett LD, Brackett SE. Fundamentals of Fixed Prosthodontics. 1997.
  • 11. Abdullah AO, Tsıtrou EA, Pollıngton S. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns. J Appl Oral Sci. 2016;24(3):258-63.
  • 12. Chay SH, Wong SL, Mohamed N, Chia A, Yap AUJ. Effects of surface treatment and aging on the bond strength of orthodontic brackets to provisional materials. Am J Orthod Dentofac Orthop. 2007;132(5): 577.e7-11.
  • 13. Proffit WR, Fields HW, Larson B, Sarver DM. Contemporary orthodontics. Elsevier Health Sciences; 2018.
  • 14. Reynolds IR. A Review of Direct Orthodontic Bonding. Br J Orthod. 1975;2(3):171-8.
  • 15. Rambhia S, Heshmati R, Dhuru V, Iacopino A. Shear bond strength of orthodontic brackets bonded to provisional crown materials utilizing two different adhesives. Angle Orthod. 2009;79(4):784-9.
  • 16. Kirmali O, Akin H, Ozdemir AK. Shear bond strength of veneering ceramic to zirconia core after different surface treatments. Photomed Laser Surg. 2013;31(6):261-8.
  • 17. Garcés GA, Rojas VH, Bravo C, Sampaio CS. Shear bond strength evaluation of metallic brackets bonded to a CAD/CAM PMMA material compared to traditional prosthetic temporary materials: an in vitro study. Dent Press J Orthod. 2020;25(3):31-8.
  • 18. Goymen M, Topcuoglu T, Topcuoglu S, Akin H. Effect of different temporary crown materials and surface roughening methods on the shear bond strengths of orthodontic brackets. Photomed Laser Surg. 2015;33(2):55-60.
  • 19. Powers JM, Kim HB, Turner DS. Orthodontic adhesives and bond strength testing. Semin Orthod. 1997;3(3):147-56.
  • 20. Christensen GJ. The fastest and best provisional restorations. J Am Dent Assoc 1939. 2003;134(5):637-9.
  • 21. Khan Z, Razavi R, von Fraunhofer JA. The physical properties of a visible light-cured temporary fixed partial denture material. J Prosthet Dent. 1988;60(5):543-5.
  • 22. Yao J, Li J, Wang Y, Huang H. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J Prosthet Dent. 2014;112(3):649-57.
  • 23. Wiegand A, Stucki L, Hoffmann R, Attin T, Stawarczyk B. Repairability of CAD/CAM high-density PMMA- and composite-based polymers. Clin Oral Investig. 2015;19(8):2007- 13.
  • 24. Alt V, Hannig M, Wöstmann B, Balkenhol M. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater. 2011;27(4):339-47.
  • 25. Güth JF, Almeida E Silva JS, Ramberger M, Beuer F, Edelhoff D. Treatment concept with CAD/CAM-fabricated high-density polymer temporary restorations. J Esthet Restor Dent. 2012;24(5):310-8.
  • 26. Stawarczyk B, Özcan M, Trottmann A, Schmutz F, Roos M, Hämmerle C. Two-body wear rate of CAD/CAM resin blocks and their enamel antagonists. J Prosthet Dent. 2013;109(5):325-32.
  • 27. Hensel F, Koenig A, Doerfler HM, Fuchs F, Rosentritt M, Hahnel S. CAD/CAM ResinBased Composites for Use in Long-Term Temporary Fixed Dental Prostheses. Polymers. 2021;13(20):3469.
  • 28. Cumerlato M, de Lima EM, Osorio LB, Mota EG de Menezes LM, Rizzatto SMD. Effect of surface treatment of prefabricated teeth on shear bond strength of orthodontic brackets. Dent Press J Orthod. 2017;22(4):47- 52.
  • 29. Dias FMCS, Pinzan-Vercelino CRM, Tavares RR de J, Gurgel J de A, Bramante FS, Fialho MNP. Evaluation of an alternative technique to optimize direct bonding of orthodontic brackets to temporary crowns. Dent Press J Orthod. 2015;20(4):57-62.
  • 30. Lundvall PK, Ruyter E, Rønold HJ, Ekstrand K. Comparison of Different Etching Agents and Repair Materials Used on Feldspathic Porcelain. J Adhes Sci Technol. 2009;23(7-8):1177-86.