THERMAL AND MECHANICAL PROPERTIES OF CONCRETES CONTAINING POLYPROPYLENE, KAPOK AND COCONUT FIBERS

THERMAL AND MECHANICAL PROPERTIES OF CONCRETES CONTAINING POLYPROPYLENE, KAPOK AND COCONUT FIBERS

Concrete is a brittle material with very low tensile unit deformation capacity and tensile strength. Where these properties of concrete are required, by the addition of high-tech fibers produced from different materials within the concrete, weak properties of concrete are being tried to be improved. In this study, it is aimed to investigate the physical and mechanical properties of concretes obtained by using different fibers at %1, 2 and 3 ratios by keeping amount of cement constant in the concrete mixtures. According to experimental results, it was seen that the increasing fiber additive in the concrete mixtures, flexural strength were increased by addition of fibers to concrete, slump and compressive strength were decreased. In addition, unit weights decreased and thermal insulation properties increased positively.

___

  • 1. Arjun D. Vinay PS. And Anand K. Mechanical properties evaluation of concrete with crumb rubber particles used as fine aggregate. Usak University Journal of Engineering Sciences, 2021;4(1),28-41.
  • 2. Taşdemir MA. Bayramov F. Kocatürk AN. and Yerlikaya M. Betonun performansa göre tasarımında yeni gelişmeler. Beton 2004 Kongresi Bildiriler, İstanbul, 2004.
  • 3. Kurt G. Lif içeriği ve su/çimento oranının fibrobetonun mekanik davranışına etkileri. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İTÜ, 2006.
  • 4. Baradan B. Yapı Malzemesi II. DEÜ, Mühendislik Fakültesi Basım Ünitesi, Izmir, 2000;221.
  • 5. Ekincioğlu Ö. Karma lif içeren çimento esaslı kompozitlerin mekanik davranışı bir optimum tasarım. Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, 2003.
  • 6. Chawla KK. Fibrous materials. Cambridge University Pres, Cambridge, 1988.
  • 7. Sahmaran M. Yurtseven A. Yaman IO. Workability of hybrid fiber reinforced self-compacting concrete. Building and Environment, 1672- 1677.
  • 8. Kadarkarai A. Muthiah M. Arunachalam S. Arunasankar C. and Rangaswamy KD. Mechanical and durability characterization of hybrid fibre reinforced green geopolymer concrete. Research on Engineering Structures&Materials, 2022;8(1),19-43.
  • 9. Ojha PN. Trivedi A. Singh B. Kumar NSA. Patel V and Gupta RK. High performance fiber reinforced concrete – for repair in spillways of concrete dams. Research on Engineering Structures&Materials, 2021;7(4),505-522.
  • 10. Mohanty AK. Misra M. and Drzal LT. Natural fibers, biopolymers, and biocomposites, boca raton. USA: CRC Press, 2005.
  • 11. Başer İ. Elyaf bilgisi. İstanbul, Türkiye, Marmara Üniveristesi Döner Sermaye İşletmesi Teknik Eğitim Fakültesi Matbaa Birimi, 2002.
  • 12. Lim TT. and Huang X. Evaluation of kapok (Ceiba Pentandra (L.) Gaertn.) as a natural hollow hydrophobic–oleophilic fibrous sorbent for oil spill cleanup. Chemosphere, 2007;66(5),955-963.
  • 13. Xu G. Luo J. Lou Y. and Wang F. Analysis of the bending property of kapok fiber. The Journal of The Textile Institute, 2011;102(2),120-125.
  • 14. Zheng Y. Wang J. Zhu Y. and Wang A. Research and application of kapok fiber as an absorbing material: a mini review. Journal of Environmental Sciences, 2015;27(1);21-32.
  • 15. Yazıcıoğlu G. Pamuk ve diğer bitkisel lifler. İzmir, Türkiye, Tekstil Mühendisliği Bölümü Mühendislik Fakültesi Basım Ünitesi, 1999.
  • 16. Gürcüm BH. Tekstil malzeme bilgisi, İzmir, Türkiye, Güncel Yayıncılık, 2010.
  • 17. O’Connor S. and Brooks MM: X-Radiography of textiles, dress and related objects. Burlington, USA: Elsevier, 2007.
  • 18. Mwaikambo LY. Review of the history, properties and application of plant fibres. African Journal of Science and Technology, 2006;7(2);120-133.
  • 19. Mwaikambo LY. and Ansell MP. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization, Journal of Applied Polymer Science, 2002;84(12),2222-2234.
  • 20. Lewin M. Handbook of fiber chemistry, New York, USA: CRC Press, 2010.
  • 21. Sinclair R. Textiles and fashion: materials, design and technology, Cambridge, UK: Woodhead Publishing Limited, 2014.
  • 22. Yan J. Fang C. Wang FM. And Xu B. Compressibility of the kapok fibrous assembly. Textile Research Journal, 2013;83(10),1020-1029.
  • 23. Zheng Y. And Wang A. Kapok fiber: structure and properties. Biomass and Bioenergy, Springer, 2014.
  • 24. X, G.-b. Liu W. Lou Y and Wang FM. Analysis of the tensile property of kapok fiber. Journal of Donghua University (Natural Science), 2009;5(1), 8.
  • 25. Mwaikambo L. and Ansell M. the determination of porosity and cellulose content of plant fibers by density methods. Journal of Materials Science Letters, 2001;20(23),2095-2096.
  • 26. Mwaikambo L. Review of the history, properties and application of plant fibres. African Journal of Science and Technology, 2006;7(2),121.
  • 27. Eichhorn SJ. Hearle JWS. Jaffe M. and Kikutani T. Handbook of textile fibre structure, Cambridge, UK: Woodhead Publishing Limited, 2009.
  • 28. Abdelmoumin YZ. and Muhammad T. Biobased kapok fiber nano-structure for energy and environment application: A critical review. Molecules, 2022;27;1-48.
  • 29. Rozman HD. Tan KW. Kumar RN. Abubakar A. Mohd Ishak ZA. Ismail H. The effect of lignin as a compatibilizer on the physical properties of coconut fiber–polypropylene composites. European Polymer Journal, 2000;36(7),1483-1494.
  • 30. Norazman C. Wan C. Tay LT. Ramadhansyah PJ. Chemical and physical properties of coconut fiber in asphalt mixture: A review. Journal of Engineering and Science Research, 2019;3(1):11-16.
  • 31. Pongsathorn K. Mechanical properties of banana and coconut fibers reinforced epoxy polymer matrix composites. Proceedings of Academics World 17th International Conference, Tokyo, Japan, 15th January 2016, ISBN: 978-93-82702-12-2.
  • 32. Keynty Boy VM, Toni-An Mae CS, Rossana Marie CA. and Sergio CC. Characterization of coconut (cocos nucifera) husk and shell for gasification: A study on fouling and slagging tendencies. Philippine Journal of Agricultural and Biosystems Engineering. 2019;15(1);27-37.
  • 33. TS EN 12350-2, Concrete -fresh concrete experiments - Part 2: Slump Test, Turkish Standards Institution, Ankara, Turkey, 2002.
  • 34. TS EN 1097-6, Tests for mechanical and physical properties of aggregates- Part 6: Determination of particle density and water absorption.
  • 35. TS EN 12390-4. Testing hardened concrete- Part 4: Compressive strength- Specification for testing machines.
  • 36. TS 825, Determination of thermal ınsulation in buildings, Turkish Standards Institution, Ankara, December, 1978.