Sesqui-Harmonic Curves in LP-Sasakian Manifolds

Sesqui-Harmonic Curves in LP-Sasakian Manifolds

In this article, we characterize interpolating sesqui-harmonic spacelike curves in a four dimensional conformally and quasi-conformally flat and conformally symmetric Lorentzian Para-Sasakian manifold. We give some theorems for these curves.

___

  • [1] J.Eells,J.H.Sampson,HarmonicmappingoftheRiemannianmanifold,AmericanJ.Math.,86(1964),109-160.
  • [2] G.Y.Jiang,2-harmonicisometricimmersionsbetweenRiemannianmanifolds,ChineseAnn.Math.Ser.A.,7(1986),130-144.
  • [3] V.Branding,Oninterpolatingsesqui–harmonicmapsbetweenRiemannianmanifolds,J.Geom.Anal.,30(2020),278-273.
  • [4] L.Loubeau,S.Montaldo,Biminimalimmersions,Proc.Edinb.Math.Soc.,51(2008),421-437.
  • [5] F. Karaca, C. Ozgu ̈r, C., De, U. C., On interpolating sesqui–harmonic Legendre curves in Sasakian space forms, Int. J. Geom. Meth. Mod. Phys., 17(1)(2020), 13 pages.
  • [6] S.Yu ̈kselPerktas ̧,B.E.Acet,S.Ouakkas,Onbiharmonicandbiminimalcurvesin3-dimensionalf-Kenmotsumanifolds,Fund.Cont.Math.Sci.1(1) (2020), 14-22.
  • [7] S.Keles ̧,S.Yu ̈kselPerktas ̧,E.Kılıc ̧,,BiharmonicCurvesinLP-SasakianManifolds,Bull.Malays.Math.Sci.Soc.,33(2010),325-344.
  • [8] K.Matsumoto,OnLorentzianparacontactmanifolds,Bull.YamagotaUniv.Natur.Sci.,12(1989),151-156.
  • [9] K.Matsumoto,I.Mihai,R.Rosca,ξ−nullgeodesicgradientvectorfieldsonaLorentzianpara-Sasakianmanifold,J.KoreanMath.Soc.,32(1995), 17-31.
  • [10] I.Sato,Onastructuresimilartothealmostcontactstructure,Tensor(N.S.).,30(1976),219-224.
  • [11] M. Tarafdar, A. Bhattacharyya, On Lorentzian para-Sasakian manifolds, in Steps in Differential Geometry (Debrecen). Inst. Math. Infor. (2000), 343-348.
  • [12] M.C.Chaki,B.Gupta,Onconformallysymmetricspaces,IndianJ.Math.,5(1963),113-122.
  • [13] J.Walrave,CurvesandsurfacesinMinkowskispaces,DoctoralThesis,K.U.Leuven,Fac.ofScience,1995.