Sasakian Statistical Manifolds with Semi-Symmetric Metric Connection

Sasakian Statistical Manifolds with Semi-Symmetric Metric Connection

In the present paper, firstly we express the relation between the semi-symmetric metric connection $\tilde{\nabla}$ and the torsion-free connection $\nabla$ and obtain the relation between the curvature tensors $\tilde{R}$ of $\tilde{\nabla}$ and $R$ of $\nabla$. After, we obtain these relations for $\tilde{\nabla}$ and the dual connection $\nabla^{\ast}.$ Also, we give the relations between the curvature tensor $\tilde{R}$ of semi-symmetric metric connection $\tilde{\nabla}$ and the curvature tensors $R$ and $R^{\ast}$ of the connections $\nabla$ and $\nabla^{\ast}$ on Sasakian statistical manifolds, respectively. We obtain the relations between the Ricci tensor (and scalar curvature) of semi-symmetric metric connection $\tilde{\nabla}$ and the Ricci tensors (and scalar curvatures) of the connections $\nabla$ and $\nabla^{\ast}.$ Finally, we construct an example of a 3-dimensional Sasakian manifold with statistical structure admitting the semi-symmetric metric connection in order to verify our results.

___

  • [1] C.R. Rao, Information and accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc., 37 (1945), 81–91.
  • [2] N. Ay, W. Tuschmann, Dually flat manifolds and global information geometry, Open Syst. Inf. Dyn., 9 (2002), 195-200.
  • [3] A. S. Diallo, L. Todjihounde, Dualistic structures on twisted product manifolds, Global J. Adv. Res. Cl. Mod. Geom., 4(1) (2015), 35-43.
  • [4] S. Amari, Differential-geometrical methods in statistics, Lecture Notes in Statist., 28, Springer, New York, 1985.
  • [5] A. M. Blaga, M. Crasmareanu, Golden statistical structures, Comptes rendus de l’Acad emie bulgare des Sci., 69(9) (2016), 1113-1120.
  • [6] O. Calin, C. Udris¸te, Geometric modeling in probability and statistics, Springer, 2014.
  • [7] H. Furuhata, Hypersurfaces in statistical manifolds, Differential Geom. Appl., 27 (2009), 420-429.
  • [8] T. Kurose, Dual connections and affine geometry, Math. Z., 203 (1990), 115-121.
  • [9] H. Matsuzoe, J. I. Takeuchi, S. I. Amari, Equiaffine structures on statistical manifolds and Bayesian statistics, Differential Geom. Appl., 24 (2006), 567–578.
  • [10] M. Noguchi, Geometry of statistical manifolds, Differential Geom. Appl., 2 (1992), 197-222.
  • [11] S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure, I, Tohoku Math. J., 12(2), (1960), 459–476.
  • [12] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93–103.
  • [13] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32 (1985), 187-193.
  • [14] A. D. Vilcu, G. E. Vilcu, Statistical manifolds with almost quaternionic structures and quaternionic Kahler-like statistical submersions, Entropy, 17 (2015), 6213-6228.
  • [15] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, M. H. Shahid, Sasakian statistical manifolds, J. Geom. Phys., 117 (2017), 179-186.
  • [16] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, Kenmotsu statistical manifolds and warped product, J. Geom., (2017), doi: 10.1007/s00022-017-0403-1.
  • [17] J. Zhang, A note on curvature of a-connections of a statistical manifold, Ann. Inst. Statist. Math., 59 (2007), 161-170.
  • [18] H. A. Hayden, Subspace of a space with torsion, Proc. London Math. Soc. II Series, 34 (1932), 27–50.
  • [19] A. Friedmann, J. A. Schouten, U¨ ber die geometric der halbsymmetrischen U¨ bertragung, Math. Z., 21 (1924), 211–223.
  • [20] D. E. Blair, Contact manifolds in Riemannian geometry, Lect. Notes Math., 509, Springer, 1976.
  • [21] K. Yano, On semi-symmetric connection, Rev. Roumaine Math. Pures Appl., 15 (1970), 1570–1586.