Petrie Paths in Triangular Normalizer Maps

Petrie Paths in Triangular Normalizer Maps

This study is devoted to investigate the Petrie paths in the normalizer maps and regular triangular maps corresponding to the subgroups $\Gamma_0(N)$ of the modular group $\Gamma$. We show that each regular triangular map admits a closed Petrie path. Thus, for each regular map, we find the Petrie length of the corresponding map.

___

  • [1] B. Schoeneberg, Elliptic Modular Functions, Springer, Berlin, 1974.
  • [2] N. Yazıcı Go¨zu¨tok, B. O¨ . Gu¨ler, Suborbital graphs for the group GC(N), Bull. Iran. Math. Soc., 45 (2019), 593-605.
  • [3] Y. Kesicio˘glu, M. Akbas¸, On suborbital graphs for the group G3, Bull. Iran. Math. Soc., 46 (2020), 1731-1744.
  • [4] B. O¨ . Gu¨ler, M. Bes¸enk, A.H. Deg˘er, S. Kader, Elliptic elements and circuits in suborbital graphs, Hacettepe J. Math. Stat., 40 (2011), 203-210.
  • [5] P. Jaipong, W. Promduang, K. Chaichana, Suborbital graphs of the congruence subgroup G0(N), Beitr. Algebra Geom., 60 (2019), 181-192.
  • [6] P. Jaipong, W. Tapanyo, Generalized classes of suborbital graphs for the congruence subgroups of the modular group, Algebra Discret. Math., 27 (2019), 20-36.
  • [7] M. Akbas¸, D. Singerman, Onsuborbital graphs for the modular group, Bull. London Math. Soc., 33 (2001), 647-652.
  • [8] N. Yazıcı Go¨zu¨tok, U. Go¨zu¨tok, B. O¨ . Gu¨ler, Maps corresponding to the subgroups G0(N) of the modular group, Graphs Combin., 35 (2019), 1695-1705.
  • [9] N. Yazıcı G¨oz¨utok, Normalizer maps modulo N, Mathematics, 10 (2022), 1046.
  • [10] J. H. Conway, S. P. Norton, Monstrous moonshine, Bull. London Math. Soc., 11 (1977), 308-339.
  • [11] M. Akbas¸, D. Singerman, The signature of the normalizer of G0(N), Lond. Math. Soc. Lect. Note Ser., 165 (1992), 77-86.
  • [12] D. Singerman, J. Strudwick, Petrie polygons, Fibonacci sequences and Farey maps, Ars Math. Contemp., 10 (2016), 349-357.
  • [13] D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.