On Almost Generalized Weakly Symmetric $\alpha$-Cosymplectic Manifolds

On Almost Generalized Weakly Symmetric $\alpha$-Cosymplectic Manifolds

In the present paper, we study the notions of an almost generalized weakly symmetric $\alpha$-cosymplectic manifolds and an almost generalized weakly Ricci-symmetrik $\alpha$-cosymplectic manifolds.

___

  • [1] N. Aktan, M. Yıldırım, C. Murathan,Almost f -cosymplectic manifolds, Mediterr. J. Math., 11(2014), 775-787.
  • [2] G. Ayar, S.K. Chaubey, M-Projective curvature tensor over cosymplectic manifolds, Differ. Geom. Dyn. Syst., 21(2019), 23-33.
  • [3] K.K. Baishya, P.R. Chowdhury, J. Mikes, P. Peska, On almost generalized weakly symmetric Kenmotsu manifolds, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 55(2016), 2, 5-15.
  • [4] S. Beyendi, G. Ayar, N. Aktan, On a type of a-cosymplectic manifolds, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(1)(2019), 852-861.
  • [5] M.C. Chaki, T. Kawaguchi, On almast pseudo Ricci symmetric manifolds, Tensor, 68(1)(2017), 10-14.
  • [6] M. C. Chaki, On pseudo Ricci symmetric manifolds, , Bulg. J. Physics, 15(1998), 526-531.
  • [7] D.E. Blair, Contact manifolds in Riemannian geometry, , Lecture Notes in Math. 509, (1976), Springer-Verlag, Berlin.
  • [8] R.S.D. Dubey, Generalized recurrent spaces, Indian J. Pure Appl. Math., 10(1979), 1508-1513.
  • [9] H. Ozturk, C. Murathan, N. Aktan, A.T. Vanli, Almost a-cosymplectic f -manifolds, (2014), An. Stiint. Univ. Al. I. Cuza Iasi Inform. (N.S.) Matematica, Tomul LX, f.1.
  • [10] L.Tamassy, T.Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc., J. Bolyai, 56(1989), 663-670.
  • [11] M. Tarafdar, M.A.A. Jawarneh, Semi-pseudo Ricci symmetric manifold, J. Indian. Inst. of Science., 73(1993), 591-596.
  • [12] T.W. Kim, H.K. Pak, Canonical foliations of certain classes of almost contact metric structures, , Acta Math, Sinica, Eng. Ser. Aug., 21(4)(2005), 841-846.
  • [13] A.G. Walker, On Ruse’s space of recurrent curvature, Proc. of London Math. Soc. 52(1950), 36-54.