Hyperspaces of Superparacompact Spaces and Continuous Maps

Hyperspaces of Superparacompact Spaces and Continuous Maps

In the present paper we establish that the space $\exp_\beta X$ of compact subsets of a Tychonoff space $X$ is superparacompact iff $X$ is so. Further, we prove the Tychonoff map $\exp_{\beta} f:\ \exp_{\beta} X\rightarrow \exp_{\beta} Y$ is superparacompact iff a given map $f:\ X\rightarrow Y$ is superparacompact.

___

  • [1] A. V. Arkhangelsky, V. I. Ponomarev. Fundamentals of the General Topology: Problems and Exercises. – D.Reidel Publishing Company. 1983. – 415 pp (Originally published as: Osnovy Obsheii Topologii v Zadachakh i Uprajneniyakh, by A. V. Arkhangelsky, V. I. Ponomarev, Izdatel’stvo ’Nauka’ Moscow, 1974).
  • [2] D. K. Musayev, B. A. Pasynkov, On compactness and completeness properties of topological spaces and continuous maps, – Tashkent: ’Fan’. 1994. – 124 pp.
  • [3] D. K. Musayev, On compactness and completeness properties of topological spaces and continuous maps, – Tashkent: ’NisoPoligraf’. 2011. – 216 pp.
  • [4] D. Buhagiar, T. Miwa, On Superparacompact and Lindelof GO-Spaces, Houston J. Math., (24)3, (1998), 443 – 457.
  • [5] R. Engelking, General Topology, – Polish Scientific Publishers. Warszawa. – 1977.
  • [6] V. V. Fedorchuk, V. V. Filippov, General Topology. Basic Constructions (in Russian). – Moscow. Fizmatlit. 2006.
  • [7] R. Bartsch, Hyperspaces in topological categories, //arXiv:1410.3137v2 [math.GN] September 4, 2018. P. 13.
  • [8] V. Gutev, Hausdorff continuous sections, J. Math. Soc. Japan., (66) 2, (2014), pp. 523-534. doi: 10.2969/jmsj/06620523