A note on hyperbolic quaternions

A note on hyperbolic quaternions

In this work, we introduce hyperbolic quaternions and their algebraic properties. Moreover, we express Euler's and De Moivre's formulas for hyperbolic quaternions.

___

  • [1] Hamilton, W.R., Elements of Quaternions, London Longmans Green, 1866.
  • [2] Cho, E., De Moivre’s Formula for Quaternions, Appl. Math. Lett. 6 (1998), 33-35.
  • [3] Özdemir, M., The Roots of a Split Quaternion, Appl. Math. Lett. 22 (2009), 258-263.
  • [4] MacFarlane, A., Hyperbolic Quaternions, Proc. Roy. Soc. Edinburgh, 1900, pp. 169-181.
  • [5] Ward, JP., Quaternions and Cayley Numbers Algebra and Applications, Boston(SPA), Kluwer Academic, 1997.
  • [6] Demir, S., Tanışlı, M., Candemir, N., Hyperbolic Quaternions Formulation of Electromacnetism, Adv. Appl. Clifford Algebras, 20 (2010), 547-563.
  • [7] Niven I., The Roots of a Quaternion, Amer. Math. Monthly 449 (6) (1942) 386-388.
  • [8] Brand L., The Roots of a Quaternion, Amer. Math. Monthly 49 (8) (1942) 519–520.