YENİ NESİL SOĞUTUCU AKIŞKANLARIN KULLANILDIĞI SOĞUTMA SİSTEMLERİNDE BORU ÇAPININ HESAPLANMASI VE SICAKLIKLA DEĞİŞİMİNİN İNCELENMESİ

Bu çalışmada, yeni nesil soğutucu akışkanların kullanıldığı soğutma sistemlerinin emme ve basma hatlarında yağlama yağının sürüklenebilmesi için gerekli boru çapı hesaplanarak sıcaklığa göre değişimi incelenmiştir. Çalışmanın ilk aşamasında belirlenen tahmini boru çaplarına göre emme ve basma hattında bulunan borulardaki yağın sürüklenebilmesi için gerekli olan minimum soğutucu akışkan hızı (Vr,min) ve minimum soğutma yükü (qr,min) değerleri hesaplanmış, bu hesaplanan değerler ışığında kullanılması gereken gerçek boru çapları hesaplanmıştır. Analizler, soğutma yükünün 1 kW olduğu bir soğutma sisteminde K ve L tipi bakır borular için ozon tabakasına zarar veren ve küresel ısınmaya yol açan soğutucu akışkanların yerine çevre dostu alternatif akışkanlardan R134A, R410A ve R423A soğutucu akışkanları kullanılmıştır.

THE CALCULATION OF THE PIPE DIAMETER AND CHANGE WITH TEMPERATURE OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING VARIOUS ALTERNATIVE REFRIGERANTS

In this paper, the diameter of the pipe necessary for the lubrication oil to be entrained in the sucking and discharge line of the refrigerating systems using various alternative refrigerants calculated, its change range in accordance with temperature has been studied. The values of the minimum velocity of the refrigerant (Vr,min) and the minimum refrigeration load (qr,min) necessary for the oil in the pipes in the suction and discharge lines to be entrained in accordance with the estimated pipe diameters determined at the first stage of this study have been calculated, and the diameters of the pipes to be used in the light of these values have been calculated. In a refrigeration system in which refrigerating load is 1 kw for copper pipes of K and L type, eco-friendly, alternative R134A, R410A and R423A refrigerants in place of refrigerants detrimental to ozone layer and leading to global warming have been used.

___

  • P. Neksa, CO2 as refrigerant for systems in transcritical operation principles and technology status Part I, Journal of EcoLibrium. (2004) 28–33.
  • R. Llopis, E. Torrella, R. Cabello, D. Sánchez, HCFC-22 replacement with drop-in and retrofit HFC refrigerants in a two-stage refrigeration plant for low temperature, International Journal of Refrigeration, 35 (2012) 810-816.
  • P. Neksa, H. Rekstad, G.R. Zakeri, P.A. Schiefloe, CO2 Heat Pump Water Heater: Characteristics, System Design and Experimental Results. International Journal of Refrigeration 21 (1998) 172–179.
  • P. Callaghan, M. Vainio, EC poised for action on HFC134a in MACs: Results of MAC summit 2003. Earth Technology Forum, Motor Vehicle A/C Regulatory Innovations, Washington. (2003)
  • S.C. Kesim, K. Albayrak, A. İleri, Oil entrainment in vertical refrigerant piping. International Journal of Refrigeration 23 (2000) 626-631.
  • N.P. Garland, M. Hadfield, Environmental implications of hydrocarbon refrigerants applied to the hermetic compressor. Materials and Design 26 (2005) 578–586.
  • L. Cremaschi, Y. Hwang, R. Radermacher, Experimental investigation of oil retention in air conditioning systems. International Journal of Refrigeration 28 (2005) 1018 – 1028.
  • Y. Hwang, J. P. Lee, R. Radermacher Oil distribution in a transcritical CO2 air- conditioning system, Applied Thermal Engineering 27 (2007) 2618–2625.
  • J. P. Lee, Experimental and Theoretical Investigation of Oil Retention in a Carbon Dioxide Air-Conditioning System. Doctora Thesis, University of Maryland, 2003.
  • K. Zoellick, P. Hrnjak, Oil Retention and Pressure Drop in Horizontal and Vertical Suction Lines with R410A/POE. International Refrigeration and Air Conditioning Conference, (2010) 2327-2335.
  • A. Sethi, Oil Retention and Pressure Drop of R1234yf and R134a wıth POE ISO 32 in
  • Suction Lines. Master Thesis, University of Illinois at Urbana – Champaign, 2011.
  • S. Khosharay, M. S. Mazraeno, F. Varaminian, Modeling the surface tension of refrigerant mixtures with linear gradient theory. International Journal of Refrigeration 36 (2013) 2223-2232.
  • V.P. Zhelezny, S.V. Nichenko, Y.V. Semenyuk, B.V. Kosoy, R. Kumar, Influence of compressor oil admixtures on theoretical efficiency of a compressor system. International Journal of Refrigeration 32 (2009) 1526-1535.
  • Y.A. Çengel, J.M. Cimbala, Fluid Mechanics: Fundamentals and Applications. McGraw- Hill, New York, 2006.
  • F. M. White, Fluid Mechanics. Tata Mcgraw Hill Education Pvt. Ltd., 2011.
  • I. Dinçer, M. Kanoğlu, Refrigeration System and Applications. Wiley:West Sussex, D.J. Tritton, Physical Fluid Dynamics. Clarendon Press, (Second Edition), Oxford, 1998.
  • W.R. Fox, T. A. Mcdonald, Introduction To Fluid Mechanics. John Wiley and Sons, Inc. (Fourth Edition), New York, 1992.
  • M. Eryiğit, Yeni Nesil Soğutucu Akışkanlarda Boru Çapı Hesabı. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Isparta, 2010.
  • S.A. Klein, Engineering equation solver (EES). Version 9.433. F-Chart Software, 2013.