SEÇMELİ LAZER SİNTERLEME TEZGÂHI İÇİN İMALAT YAZILIMI GELİŞTİRİLMESİ

Alışılmamış imalat yöntemlerinden biri olan eklemeli imalat teknikleri, 80’li yılların sonlarına doğru gelişmeye başlamıştır. Başlangıçta polimerlerden iletişim ve muayene araç gereçleri olarak prototip yapmak için kullanılmıştır. Daha sonra 90’lı yıllarda hızlı prototipleme sistemlerindeki gelişmelerle metal ve seramikten son kullanım direkt fonksiyonel parçalar üretilmeye başlanmıştır. Günümüzde de seçmeli lazer sinterleme/ergitme (SLS/SLE) makineleri ile birçok alanda çeşitli metal tozları kullanılarak klasik imalat yöntemleri ile imal edilemeyecek kadar karmaşık geometride olan parçaların çok hızlı bir şekilde imalatı yapılabilmektedir. Bu çalışmada, SLS/SLE tezgâhında ve diğer eklemeli imalat sistemlerinde kullanılabilecek bir yazılım geliştirilmiştir. Geliştirilen yazılım, araştırma-geliştirme (AR-GE) amaçlı üretilmiş olan bir Doğrudan Seçmeli Lazer Sinterleme tezgâhına uyarlanmıştır. Yazılım iki modülden oluşmaktadır. Birinci modül ile, STL (STeryoLitografi) dosya formatındaki katı modelin üç boyutlu (3B) görüntülenmesi, üçgen yüzey örgüsü boşluk kontrolü-tamiri ve modelin dilimlenmesi gerçekleştirilmiştir. İkinci modül ile de, birinci modülde dilimlenmiş modelin iki boyutlu (2B) dilimlerinin gösterimi, tabla üzerinde yerleşimi, farklı tarama desenlerinde tarama yollarının oluşturulması, bu tarama yollarındaki toplam lazer mesafesinin hesaplanması, seçilen tarama desenine ve lazer parametrelerine göre yakma işleminin yapılması, tezgah servo motorları hareketlerinin sağlanması gerçekleştirilmiştir. Geliştirilen yazılım Eİ makineleri üretimi çalışmalarına ve SLS/SLE alanında yapılacak ARGE faaliyetleri için altyapı oluşturmaya katkı sağlayacaktır.

DEVELOPMENT OF MANUFACTURING SOFTWARE FOR SELECTIVE LASER SINTERING MACHINE

Additive Manufacturing (AM) techniques, one of the non-conventional manufacturing methods, first emerged in the late 1980s. At the beginning, it was used to make prototype from polymers as a tool for communication and inspection. Later in 1990s, advancements in the rapid prototyping systems paved the way for manufacture of end-use direct functional parts from metal and ceramic. Nowadays, selective laser sintering/melting (SLS/SLM) machines makes it possible for some parts which could not be manufactured through conventional methods due to their geometrical complexity, to be manufactured rapidly by using various metal powders in many areas. In this study, a software that will be able to be used in SLS/SLM bench and in other additive manufacturing system, has been developed. The software has been adapted to a Direct Selective Laser Sintering bench manufactured for research-development (R&D) purposes. The software consists of two modules. In the first module, the solid model in stereolithography (STL) file format was visualized as three dimensional (3D), its hole control and fix was made and it was sliced. In the second module, two dimensional (2D) slice of the model which was sliced in the first module was shown, it was replaced on a process table, scan path was created with different scan pattern, the total distance on that scan path was calculated, burning process was started according to scan pattern selected and laser parameters, bench servo motors movements were carried out. The software developed shall contribute to set up a substructure for manufacturing studies for AM machines and R&D activities to be held in SLS/SLM field.

___

  • Anglada, M.V., Garcia, N.P., Crosa, P.B. (1999). Directional adaptive surface triangulation. Computer Aided Geometric Design, 16, 107-126.
  • Beal, V.E., Erasenthiran, P., Hopkinson, N., Dickens, P., Ahrens, C.H. (2006). The Effect Of Scanning Strategy On Laser Fusion Of Functionally Graded H13/Cu Materials. The International Journal Advenced Manufacturing Technology, 30, 844-852.
  • Bertol, L.S., Júnior, W.K., Silva, F.P., Aumund-Kopp, C. (2010). Medical design: Direct Metal Laser Sintering of Ti–6Al–4V. Materials and Design, 31, 3982-3988.
  • Bircan, D.A. (2008). Development of a Nurbs Based Adaptive Slicing Procedure For Fused Deposition Modeling In Rapid Prototyping Applications. Çukurova University, Instıtute of Natural and Applied Sciences, Ph.D. Thesis, 161p, Adana.
  • Choi, K-H., Kim H-C., Doh Y-H., Kim D-S. (2009). Novel Scan Path Generation Method Based On Area Division For SFFS. Journal of Mechanical Science and Technology, 23, 1102-1111.
  • CustomPartNet, Inc., http://www.custompartnet.com/wu/additive-fabrication (2014.03.20). Çelik, İ., Karakoç, F., Çakır, M. C., Duysak, A. (2013). Hızlı Prototipleme Teknolojileri ve Uygulama Alanları. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31, 53-69.
  • Deckard, C., (1989). Method And Apparatus For Producing Parts By Selective Sintering. US Patent 4,863,538.
  • Dolenc, A., Makela, I. (1994). Slicing Procedures For Layered Manufacturing Techniques. Computer‐Aided Design, 26(2), 119‐126.
  • Giannatsis, J., Dedoussis, V. (2009). Additive Fabrication Technologies Applied To Medicine And Health Care: A Review, Int. J. Adv. Manuf. Technol., 40, 116-127.
  • Hu, P., Wang, C., Li, B., Liu, M. (2012). Filling Holes In Triangular Meshes In Engineering. Journal Of Software, 7, 1, 141-148.
  • Ito, Y., Nakahashi, K. (2002). Surface Triangulation For Polygonal Models Based On CAD Data. International Journal For Numerical Methods In Fluids. Int. J. Numer. Meth. Fluids, 39, 75-96.
  • Jhabvala J. (2010). Study Of The Consolidation Process Under Macro-and Microscopic Thermal Effects in Selective Laser Sintering and Selective Laser Melting. Faculte Sciences Et Techniques De L’ingenieur, Doctoral Thesis, 155p, Switzerland.
  • Kai, C.C., Jacob, G.G.K., Mei, T. (1997). Interface Between CAD and Rapid Prototyping Systems Part 1: A Study of Existing Interfaces. International Journal of Advanced Manufacturing Technology, 13, 566-570.
  • Khan, M., Dickens, P.M. (2008). Processing Parameters For Selective Laser Melting (SLM) Of Gold. September, 278-289.
  • King, D., Tansey, T., (2002). Alternative materials for rapid tooling. Journal of Materials Processing Technology, 121, 313–317.
  • Kruth, J.-P., Yasa, E., Deckers, J. (2009). Roughness Improvement in Selective Laser Melting. https://lirias.kuleuven.be/bitstream/123456789/197936/2/ 08pp075.doc (2012.10.18).
  • Kulkarni, P., Dutta, D. (1996). An Accurate Slicing Procedure For Layered Manufacturing. Compufer-Aided Design, 28, 9, 683-697.
  • Lai, J.Y., Lai, H.C. (2006). Repairing Triangular Meshes For Reverse Engineering Applications. Advances in Engineering Software, 37, 667-683.
  • Liang, M., Hongzan, B. (2006). Temperature And Stress Analysis And Simulation In Fractal Scanning-Based Laser Sintering. The International Journal Advenced Manufacturing Technology, 34, 898-903.
  • Liao, Y.-S., Chiu, Y.-Y. (2001). A New Slicing Procedure for Rapid Prototyping Systems. Int. J. Adv. Manuf. Technol., 18, 579-585.
  • Liepa, P. (2003). Filling Holes In Meshes. Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing. Switzerland Eurographics Association, 200-205.
  • Ma, W., He, P. (1999). An Adaptive Slicing And Selective Hatching Strategy For Layered Manufacturing. Journal of Materials Processing Technology, 89-90, 191-197.
  • Mani, K., Kulkarni, P., Dutta, D. (1999). Region-based Adaptive Slicing. Computer-Aided Design, 31, 317-333.
  • Marchandise, E., Piret, C., Remacle, J.-F. (2012). CAD And Mesh Repair With Radial Basis Functions. Journal of Computational Physics, 231, 2376-2387.
  • Matusik, W., Bickel, B., Umetani, N. (2015). http://computationalfabrication.com/Matusik_Part1.pdf (2016.10.10).
  • Mercelis, P., Kruth, J-P. (2006). Residual Stresses In Selective Laser Sintering And Selective Laser Melting. Rapid Prototyping Journal, 12, 5, 254-265.
  • Mumtaz, K.A., Erasenthiran, P., Hopkinson, N. (2008). High Density Selective Laser Melting Of Waspaloy. Journal of Materials Processing Technology, 195, 77-87.
  • Neğiş, E., (2014). http://www.turkcadcam.net/rapor/autofab/ (2014.09.09).
  • Nickel A.H., Barnett, D.M., Prinz, F.B. (2001). Thermal Stresses And Deposition Patterns In Layered Manufacturing. Materials Science and Engineering, A317, 59-64.
  • Özuğur, B. (2006). Hızlı Prototipleme Teknikleri İle Kompleks Yapıdaki Parçaların Üretilebilirliklerinin Araştırılması. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 117s, Ankara.
  • Pandey, P.M., Reddy, N.V., Dhande, S.G. (2003). Slicing Procedures in Layered Manufacturing: A Review. Rapid Prototyping Journal, 9, 5, 274-288.
  • Partee, B., Hollister, S.J., Das, S., (2006). Selective Laser Sintering Process Optimization for Layered Manufacturing of CAPA® 6501 Polycaprolactone Bone Tissue Engineering Scaffolds. Journal of Manufacturing Science and Engineering (ASME), 128, 531-540.
  • Simchi, A., Pohl, H. (2003). Effects Of Laser Sintering Processing Parameters On The Microstructure And Densification Of Iron Powder. Materials and Engineering, A359, 119-128.
  • Simchi, A. (2006). Direct Laser Sintering Of Metal Powders: Mechanism, Kinetics And Microstructural Features. Materials Science and Engineering, A428, 1-2, 148-158. Society of Manufacturing Engineers (SME), (1970).
  • http://www.sme.org/Tertiary.aspx?id=17485#sthash.gkpsIRmg.dpuf (2014.03.20).
  • Stratasys Ltd. (1989). http://www.stratasys.com (2014.1019.).
  • Szilvasi, M., Matyasi, Gy. (2003). Analysis of STL Files. Mathematical and Computer Modelling, 38, 945-960.
  • Tyberg, J., Bohn, J.H. (1998). Local adaptive slicing. Rapid Prototyping Journal, 4, 3, 118- 127.
  • Vatani, M., Rahimi, A.R., Brazandeh, F., Sanati, N.A. (2009). An Enhanced Slicing Algorithm Using Nearest Distance Analysis for Layer Manufacturing. PWASET, 37, 721-726.
  • Wang, D., Hassan, O., Morgan, K., Weatherill, N. (2007). Enhanced Remeshing From STL Files With Applications To Surface Grid Generation, Commun. Numer. Meth. Engng., vol.23, pp.227-239.
  • Xie, J.W., Fox, P., O’Neill, W., Sutcliffe, C.J. (2005). Effect Of Direct Laser Re-Melting Processing Parameters And Scanning Strategies On The Densification Of Tool Steels. Journal of Materials Processing Technology, 170, 516–523.
  • Yarkınoğlu, O. (2007). Computer Aided Manufacturing (CAM) Data Generation For Solid Freeform Fabrication. Middle East Technical University, The Graduate School Of Natural And Applied Sciences, Master Thesis, 110p, Ankara.
  • Yasa, E., Deckers, J., Craeghs, T., Badrossamay, M., Kruth, J-P. (2009). Investigation On Occurrence Of Elevated Edges In Selective Laser Melting. Ph.D. Support Program for Students in Foreign Countries, Department of Mechanical Engineering, Catholic University of Leuven, Belgium, 180-192.
  • Zhang, L.-C., Han, M., Huang, S.-H. (2003). CS File – An Improved Interface Between CAD and Rapid Prototyping Systems. Int. J. Adv. Manuf. Technol., vol.21, pp.15-19.
  • Zhang, W., Shi Y., Liu B., Xu L., Jiang W. (2008). Consecutive Sub-Sector Scan Mode With Adjustable Scan Lengths For Selective Laser Melting Technology. Int. J. Adv. Manuf. Technol., 41, 706-713.
  • Zhou, M.Y., Xi, J.T., Yan, J.Q. (2004). Adaptive Direct Slicing With Non-Uniform Cusp Heights For Rapid Prototyping. Int. J. Adv. Manuf. Technol., 23, 20-27.
  • Zhu, W.M., Yu, K.M. (2001). Dexel-Based Direct Slicing of Multi-Material Assemblies. Int. J. Adv. Manuf. Technol., 18, 285-302.
  • 3ders, (2016). http://www.3ders.org/3d-software/3d-software-list.html (2016.23.11).
  • 3dprintingfb, (2016). http://3dprintingforbeginners.com/software-tools/ (2016.23.11).
  • 3dprintingindustry, (2016). https://3dprintingindustry.com/news/deskartes-3data-expertversion-10-3-launched-95439/ (2016.23.11).
  • 3DSystems, (1986). http://www.3dsystems.com (2014.09.09)