ŞEBEKE BAĞLANTILI ÜÇ FAZLI SİNCAP KAFESLİ ASENKRON GENERATÖRÜN DEĞİŞKEN RÜZGAR HIZLARINDAKİ DİNAMİK CEVABI

Bu makalede şebeke bağlantılı üç fazlı sincap kafesli bir asenkron generatörün değişken hızlara karşı tepkisi incelenmiştir. Generatör tarafı ve şebeke tarafı iki adet sırt sırta bağlı evirici kullanılarak bir birine bağlanmıştır. Generatör tarafı kontrolde (GTK) dolaylı vektör kontrol tekniği ile tork kontrolü, şebeke tarafı kontrolde (ŞTK) ise doğrudan vektör kontrol tekniği ile DC bara gerilimi ve reaktif güç kontrol edilmiştir. Uygulama kolaylığı ve hızlı dinamik tepki vermesi açısından, generatör tarafındaki eviricide histerisiz bant kontollü bir modülasyon tekniği (HPWM), şebeke tarafında ise yine uygulama kolaylığı açısından kolay olan bir diğer modülasyon tekniği sinüs darbe genişlik modülasyonu (SPWM) tercih edilmiştir. Bir filtre olmadan şebekeye güç aktarımı yapmanın güç olmasından dolayı şebeke tarafında da bir LCL filtre kullanılmıştır. Bütün bu kontrol stratejileri MATLAB/Simulink ortamında oluşturularak elde edilmiştir. Elde edilen sonuçlardan sistemin, değişken rüzgar hızlarına olan dinamik tepkisinin hızlı olduğu ve doğru akım bara geriliminin kararlı davranışı gözlenmiştir.

___

  • Tseng, K. C., & Huang, C. C. (2014). High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system. IEEE Transactions on Industrial Electronics, 61(3), 1311-1319.
  • Chou, S. F., Lee, C. T., Ko, H. C., & Cheng, P. T. (2014). A low-voltage ride-through method with transformer flux compensation capability of renewable power grid-side converters. IEEE Transactions on Power Electronics, 29(4), 1710-1719.
  • Rajaei, A., Mohamadian, M., & Varjani, A. Y. (2013). Vienna-rectifier-based direct torque control of PMSG for wind energy application. IEEE transactions on industrial electronics, 60(7), 2919-2929.
  • Chuangpishit, S., Tabesh, A., Moradi-Shahrbabak, Z., & Saeedifard, M. (2014). Topology design for collector systems of offshore wind farms with pure DC power systems. IEEE Transactions on Industrial Electronics, 61(1), 320-328.
  • Li, R., & Xu, D. (2013). Parallel operation of full power converters in permanent-magnet direct-drive wind power generation system. IEEE Transactions on Industrial Electronics, 60(4), 1619-1629.
  • Chen, J., Chen, J., & Gong, C. (2013). New overall power control strategy for variable-speed fixed-pitch wind turbines within the whole wind velocity range. IEEE Transactions on Industrial Electronics, 60(7), 2652-2660.
  • Kanellos, F. D., & Hatziargyriou, N. D. (2010). Optimal control of variable speed wind turbines in islanded mode of operation. IEEE Transactions on Energy Conversion, 25(4), 1142-1151.
  • Bououden, S., Chadli, M., Filali, S., & El Hajjaji, A. (2012). Fuzzy model based multivariable predictive control of a variable speed wind turbine: LMI approach. Renewable Energy, 37(1), 434-439.
  • Meng, W., Yang, Q., Ying, Y., Sun, Y., Yang, Z., & Sun, Y. (2013). Adaptive power capture control of variable-speed wind energy conversion systems with guaranteed transient and steady-state performance. IEEE Transactions on Energy Conversion, 28(3), 716-725.
  • Kim, K. H., Van, T. L., Lee, D. C., Song, S. H., & Kim, E. H. (2013). Maximum output power tracking control in variable-speed wind turbine systems considering rotor inertial power. IEEE transactions on industrial electronics, 60(8), 3207-3217. Nguyen, T. H., & Lee, D. C. (2013). Advanced fault ride-through technique for PMSG wind turbine systems using line-side converter as STATCOM. IEEE transactions on industrial electronics, 60(7), 2842-2850.
  • Meng, W., Yang, Q., Ying, Y., Sun, Y., & Sun, Y. (2013, June). Adaptive power acquisition control of variable-speed wind energy conversion systems under inaccurate wind speed measurement. In 2013 American Control Conference (pp. 4271-4276). IEEE.
  • Chen, J., Chen, J., & Gong, C. (2014). On optimizing the aerodynamic load acting on the turbine shaft of PMSG-based direct-drive wind energy conversion system. IEEE Transactions on Industrial Electronics, 61(8), 4022-4031.
  • Espi, J. M., & Castello, J. (2013). Wind turbine generation system with optimized DC-link design and control. IEEE Transactions on Industrial Electronics, 60(3), 919-929.
  • Eltamaly, A. M., & Farh, H. M. (2013). Maximum power extraction from wind energy system based on fuzzy logic control. Electric Power Systems Research, 97, 144-150.
  • Lin, W. M., Hong, C. M., & Cheng, F. S. (2010). Fuzzy neural network output maximization control for sensorless wind energy conversion system. Energy, 35(2), 592-601.
  • Bouaziz, B., Bacha, F., & Gasmi, M. (2012). A Fuzzy Direct Power Control for a Variable Speed Wind Turbine. International Review of Automatic Control, 5(1), 56-65.
  • Abdullah, M. A., Yatim, A. H. M., & Tan, C. W. (2011, June). A study of maximum power point tracking algorithms for wind energy system. In 2011 IEEE Conference on Clean Energy and Technology (CET) (pp. 321-326). IEEE.
  • Bose, B. K., Power Electronics and AC Drives, Prentice-Hall, Englewood Cliffs, N.J., 1986.
  • Hadjina, T., Baotić, M., & Perić, N. (2013, May). Control of the grid side converter in a wind turbine. In 2013 36th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 925-930). IEEE.