GRANÜLER YOL TABAKALARININ YERİNDE DEĞERLENDİRME YÖNTEMLERİ: DİNAMİK KONİ PENETROMETRE (DCP) TESTİ

Ülkemizde granüler üstyapı tabakalarının (taban zemini, alttemel ve temel) sahada kalite kontrol ve değerlendirme süreçleri halen, bu tabaka malzemelerinin yerinde klasik yoğunluk ve su muhtevası ölçümlerine dayanmaktadır. Üstyapı tasarımında ampirik yöntemlerden mekanistik-ampirik yöntemlere geçilmesi ile birlikte granüler yol tabakalarının, kalite kontrol ve değerlendirilmesinde yoğunluk ölçüm yöntemlerinden tabaka dayanım ölçümlerine geçilmesi gerekliliği son yıllarda artan bir araştırma konusu olmuştur. Yoğunluk ve su muhtevası bilgileri granüler tabakaların mühendislik özellikleri hakkında yeterli bilgiyi vermemekte dolayısıyla tasarım ile kalite kontrol arasında kuvvetli bir bağ oluşturulamamaktadır. Dinamik Koni Penetrometre (DCP) testi, taban zemini ve granüler üstyapı tabakalarının yerinde dayanımlarını belirlemede kullanılan tahribatsız, etkili, hızlı ve güvenilir bir test yöntemidir. Bu çalışmada, DCP cihazının özellikleri, testlerin uygulanması ve sonuçlarının değerlendirilmesi ile ilgili bilgilere yer verilmiş ve bu test ile ilgili literatürde yer alan çalışmalar özetlenmiştir. Literatürde yer alan çalışmalar incelendiğinde ülkemizde bu konu ile ilgili oldukça az araştırma yapıldığı görülmüştür. DCP gibi yerinde dayanım ölçen test yöntemlerinin ülkemiz kalite kontrol şartnamelerine adaptasyonu, üstyapı tasarım ve bakım onarım mühendislerinin granüler yol tabakalarının mekanik özellikleri hakkında daha fazla bilgi sahibi olmalarını sağlayacaktır.

INSITU EVALUATION METHODS OF GRANULAR PAVEMENT LAYERS: DYNAMIC CONE PENETROMETER (DCP) TEST

In our country, in-situ quality control/quality assurance (QC/QA) of granular pavement layers (subgrade, subbase and base) still relies on their density and moisture measurements. With the coming changes from an empirical to mechanistic-empirical pavement design methods, it becomes essential to move towards changing the QC/QA procedures of compacted granular materials from a unit weight-based criterion to a stiffness/strength based criterion. Unit weight criteria unable to provide sufficient information about the engineering properties of granular layers, thus a missing link occurs between the design process and construction quality control. Dynamic Cone Penetrometer (DCP) is a non-destructive, effective, fast and reliable testing method which is used to determine the stiffness/strength of granular pavement layers and subgrade. In this study, information about the DCP test device, implementation and evaluation of the test results are given, and studies are summarized in the literature. It is seen that very limited research has been done in our country on this subject. Adaptation of in-situ stiffness/strength measuring test device such as DCP to quality control/quality assurance specifications of our country will make it possible to provide more information about the mechanical properties of the granular pavement layers for the pavement design and maintenance engineers.

___

  • Alshibli, K.A., Abu-Farsakh M., Seyman, E. (2005). Laboratory Evaluation of the Geogauge and Light Falling Weight Deflectometer as Construction Control Tools. Journal of Materials in Civil Engineering, 17(5), 560-569.
  • Apeagyei, A.K., Hossain, M.S. (2010). Stiffness-Based Evaluation of Base and Subgrade Quality Using Three Portable Devices. 88th Transportation Research Board Annual Meeting, 10-1721, 19p., Washington, DC.
  • Asli, C., Feng, Z.Q., Porcher, G., Rincent, J.J. (2011). Back-calculation of elastic modulus of soil and subgrade from portable falling weight deflectometer measurements. Engineering Structures, 34, 1-7.
  • Boutet, M., Dore, G., Bilodeau, J.P., Pierre, P. (2011). Development of models for the interpretation of the dynamic cone penetrometer data. International Journal of Pavement Engineering, 12(3), 201-214.
  • Chen, D.H., Wang, J.N., Bilyeu, J. (2001). Application of dynamic cone penetrometer in evaluation of base and subgrade layers. Transportation Research Record, 1764, 1-10.
  • Chen, J., Hossain M., Latorella T.M. (1999). Use of Falling Weight Deflectometer and Dynamic Cone Penetrometer in Pavement Evaluation. Transportation Research Record, 1655, 145-151.
  • Coonse, J. (1999). ‘Estimating California bearing ratio of cohesive piedmont residual soil using the Scala dynamic cone penetrometre. North Carolina State University, Master’s thesis, Raleigh, N.C.
  • Davich, P., Camargo, F., Larsen, B., Roberson, R., Siekmeier, J. (2006). Validation of DCP and LWD Moisture Specifications for Granular Materials. Minnesota Department of Transportation, MN/RC-2006-20, St. Paul.
  • De Beer, M. (1990). Use of dynamic cone penetrometer in the design of road structures. Geo- techniques in African Environment. Rotterdam: Balkema, 167–176.
  • Ese, D., Myre, J., Noss, P.M.,Vaernes, E. (1994). The use of dynamic cone penetrometer (DCP) for road strengthening design in Norway. International Conference on Bearing Capacity of Road and Airfield, 3–22.
  • Fleming, P.R., Frost, M.W., Rogers, C.D.F. (2000). Comparison of Devices for Measuring Stiffness In Situ. 5th International Conference on Unbound Aggregate In Roads, Nottingham.
  • Gabr, M.A., Hopkins, K., Coonse, J., Hearne, T. (2000). DCP Criteria for Performance Evaluation of Pavement Layers. Journal of Performance and Constructed Facilities, 14(4), 141-148.
  • George, K.P., Uddin, W., 2000. Subgrade Characterization for Highway Pavement Design. Mississippi Department of Transportation, FHWA/MS-DOT-RD-00-131, Mississippi, 261p.
  • George, V., Nageshwar R., Shivashankar R. (2009). Effect of Soil Parameters on Dynamic Cone Penetration Indices of Laterite Sub-grade Soils from India. Geotech Geol Eng., 27, 585–593.
  • Gudishala, R. (2004). Development Of Resilient Modulus Prediction Models For Base And Subgrade Pavement Layers From In Situ Devices Test Results. Louisiana State University, Master of Science, 133p, Baton Rouge.
  • Harison, I.R. (1987). Correlation between California bearing ratio and dynamic cone penetrometer strength measurement of soils. Proceedings of institution of civil engineers, 83-87.
  • Hassan, A. (1996). The Effect of Material Parameters on Dynamic Cone Penetrometer Results for Fine-grained Soils and Granular Materials. Oklahoma State University, Ph.D Dissertation, Stillwater.
  • Hossain, M.S., Apeagyei, A.K. (2010). Evaluation of the Lightweight Deflectometer for In- Situ Determination of Pavement Layer Moduli. Federal Highway Administration,FHWA/VTRC10-R6, Richmond, VA, 38p.
  • Jianzhou, C., Mustaque, H., Latorella, T.M. (1999). Use of Falling Weight Deflectometer and Dynamic Cone Penetrometer in Pavement Evaluation. Transportation Research Board, Washington, D.C.
  • Kim, H., Lee, M.S., Balunaini, U., Prezzi, M., Siddiki, N.Z. (2010). Compaction Quality Control of Fly And Bottom Ash Mixture Embankment Using Dynamic Cone Penetrometer and Lightweight Deflectometer. 88th Transportation Research Board Annual Meeting, 10-2784, Washington, DC., 21p.
  • Kleyn, E.G. (1975). ‘The use of the dynamic cone penetrometer (DCP). Transvaal Roads Department, Rep. No. 2/74, South Africa.
  • Livneh, M. (1987). Validation of correlations between a number of penetration tests and in situ California bearing ratio tests. Transportation Research Record 1219, 56-67.
  • Livneh, M. (1991). Verification of CBR and Elastic Modulus Values Derived from Local DCP Tests. 9th Southeast Asian Regional Conference on Soil Mechanics and Foundation Engineering, 1, Bangkok, pp 45-50.
  • Mohammad, L.N., Herath, A., Abu-Farsakh, M.Y., Gaspard, K., Gudishala, R. (2007). Prediction of Resilient Modulus of Cohesive Subgrade Soils from Dynamic Cone Penetrometer Test Parameters. Journal of Materials in Civil Engineering, 19(11), 986- 992.
  • Nageshwar, R., Varghese G., Shivashankar R. (2008). PFWD, CBR and DCP Evaluation of Lateritic Subgrades of Dakshina Kannada, India. 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, 4417-4423.
  • Nazzal, M. (2003). Field evaluation of in situ test technology for QC/QA procedures during construction of pavement layers and embankments. Louisiana State University, Master of Science, Baton Rouge.
  • Oman, M. (2004). Advancement of Grading & Base Material Testing. Office of Materials, Minnesota Department of Transportation, Minnesota, 30p.
  • Pandey B.B., Srinivasa K.R., Sudhakar R.K. (2003). Regression Models for Estimation of In Situ Subgrade Moduli from DCP Tests. Indian Highways, 5-19.
  • Roy, B.K. (2007). New Look at DCP Test with a Link to AASHTO SN Concept. Journal of Transportation Engineering, 133(4), 264-274.
  • Siekmeier, J., Pinta, C., Merth, S., Jensen, J., Davich, P., Camargo, F., Beyer, M. (2009). Using the Dynamic Cone Penetrometer and Light Weight Deflectometer for Construction Quality Assurance. Minnesota Department of Transportation, MN/RC 2009-12, Minnesota, 244p.
  • Siekmeier, J. A., Young, I., Beberg, D. (2000). Comparison of the Dynamic Cone Penetrometer with Other Tests During Subgrade and Granular Base Characterization in Minnesota. Nondestructive Testing of Pavements and Backcalculation of Moduli: 3, ASTM STP 1375, 14p.
  • Uz, V.E. (2012). Sathi Kaplamalardaki Kalıcı Deformasyona Etki Eden Parametrelerin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 207 s., Isparta.
  • Varghese, G., Nageshwar, R., Shivashankar, R. (2009). PFWD, DCP and CBR correlations for evaluation of lateritic subgrades. International Journal of Pavement Engineering, 10(3), 189–199.
  • Webster, S.L., Grau, R.H., Williams, R.P. (1992). Description and application of dual mass dynamic cone penetrometer. U.S. Army Engineer Waterways Experiment Station, Instruction Rep., No. GL-92-3.