GÖVDE BORULU ISI DEĞİŞTİRİCİ İÇİN ISI TARANSFER KATSAYISININ TEORİK VE DENEYSEL İNCELENMESİ

Bu çalışmanın amacı, soğutucu akışkan olarak R404A’nın kullanıldığı kompresörlü soğutma sisteminde gövde borulu ısı değiştiricinin akış halinde kaynama esnasındaki toplam ısı transfer katsayısının değişiminin sistem parametrelerine göre incelenmesidir. Bu amaç doğrultusunda deneysel bir sistem kurulmuş ve evaporatör basıncı ve sıcaklığının, soğutucu akışkan debisinin ve soğutma suyu debisinin toplam ısı transfer katsayısı üzerindeki etkisi incelenmiştir. Deney çalışması, evaporatör basıncın 2.73 - 5.76 bar ve soğutucu akışkan kütle akısının 64.64 - 152.68 kg/m2s olduğu aralıklarda yapılmıştır. Kullanılan gövde - borulu ısı değiştirici 60 cm boyunda ve bir geçişte iç çapı 8 mm ve dış çapı 10 mm olan 9 adet bakır borudan oluşmaktadır. Yapılan deneylerden elde edilen sonuçlar kullanılarak kaynama esnasındaki toplam ısı transfer katsayısı hesaplanmıştır. Deney sonuçları hesaplandıktan sonra literatürde önerilmiş üç farklı bağıntı kullanılarak kaynama esnasındaki ısı transfer katsayısı tekrar elde edilmiştir. Elde edilen değer ile deney sonuçları karşılaştırılmıştır.

THEORETICAL AND EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER COEFFICIENT FOR SHELL AND TUBE HEAT EXCHANGER

Scope of this study is to investigate the heat transfer coefficient in terms of different system parameters in a shell and tube heat exchanger equipped in a refrigeration system using R404a. For this aim, an experimental system was built up. The effects of evaporator pressure and temperature, refrigerant mass flow rate and cooling water mass flow rate on heat transfer coefficient were investigated. Experiments were made for evaporator pressure of 2.73-5.76 bar and refrigerant mass flux rate of 64.64-152.68 kg/m2s. The shell and tube heat exchanger is 60 cm in length and consist of 9 tubes which are 8 mm in inner diameter and 10 mm in outer diameter. Overall heat transfer coefficient during boiling was calculated using the results of the experiments. After calculating the experimental results, overall heat transfer coefficient during boiling was recalculated using three different equations proposed by some researchers. The calculated results were compared with experimental results.

___

  • Aprea, C., De Rossi, F., Greco, A., 2000. Experimental evaluation of R22 and R407C evaporative heat transfer coefficients in a vapour compression plant. International Journal of Refrigeration, 23, 366 - 377.
  • Bansal, P. K., Purkayastha, B., 1998. An NTU- model for alternative refrigerants. International Journal of Refrigeration, 21, 381-397.
  • Beşer, E., 1998. Soğutucu maddelerle ilgili Dünyada ve Türkiye’de gelişmeler. Mühendis ve Makine, 39 (458), 15 - 26.
  • Boissieux, X., Heikal, M.R., Johns, R.A., 2000. Two-phase heat transfer coefficients of three HFC refrigerants inside a horizontal smooth tube, part I: evaporation. International Journal of Refrigeration, 23, 269 - 283.
  • Chen, J.C., 1966. A correlation for boiling heat transfer to saturated fluids in convective flow. Ind. Eng. Chem. Proc. Des. Dev., 5, 322 - 329.
  • Chen, C.H., 2001. Experimental of flow boiling and evaporation heat transfer of R-410A and bubble characteristics in horizontal annular duct. MS. thesis, National Chaio Tung university, Hsinchu, Taiwan.
  • Genceli, F. O., 2005. Isı değiştiricileri. Birsen Yayınevi, 424s. İstanbul
  • Greco, A., Vanoli, G. P., 2005a. Flow boiling heat transfer with HFC mixtures in a smooth horizontal tube. Part I: Experimental investigations. Experimental Thermal and Fluid Science, 29 (2), 189 - 198.
  • Greco, A., Vanoli, G. P., 2005b. Flow boiling heat transfer with HFC mixtures in a smooth horizontal tube. Part II: Assessment of predictive methods. Experimental Thermal and Fluid Science, 29 (2), 199 - 208.
  • Greco, A., Vanoli, G. P., 2005c. Flow-boiling of R22, R134a, R507, R404A and R410A inside a smooth horizontal tube. International Journal of Refrigeration, 28 (6), 872 - 880.
  • Gungor, K.E., Winterton, R.H.S., 1986. A general correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Transfer, 29, 351-358.
  • Hsieh, Y.Y., Lie, Y.M., Lin, T.F., 2007. Saturated flow boiling heat transfer of refrigerant R- 410A in a horizontal annular finned duct. International Journal of Heat and Mass Transfer, 50, 1442-1454.
  • Incropera, P.F., DeWitt, D.P., 1990. Fundamentals of Heat and Mass Transfer. John Wiley & Sons, 919p. New York.
  • Incropera, P.F., DeWitt, D.P., 2004. Isı ve Kütle Geçişinin Temelleri. Literatür Yayıncılık, 960s. İstanbul.
  • Kandlikar, S.G., 1990. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. ASME J. Heat Transfer 112, 219-228.
  • Kurem, E., 1997. Hava Soğutucu Kanatlı Borulu Evaporatörün Teorik ve Deneysel Olarak İncelenmesi. Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 121s, Bursa.
  • Li, H., Kottke, V., 1998. Visualization and determination of local heat transfer coefficients in shell-and-tube heat exchangers for staggered tube arrangement by mass transfer measurements. Experimental Thermal and Fluid Science, 17, 210 - 216.
  • Li, H., Kottke, V., 1999. Analysis of local shell side heat and mass transfer in the shell aand tube heat exchanger with disc nad doughnut baffless. International Journal of Heat and Mass Transfer, 42, 3509 - 3521.
  • Liu, Z., Winterton, R.H.S., 1991. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation, Int. J. Heat Mass Transfer 34, 2759 - 2766.
  • Polat, F., 2001. Bazı parametrelerin ve alternatif soğutucu akışkanların soğutma sisteminin performansına ve sistem elemanlarının kapasitelerine etkilerinin analizi. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek lisans tezi, 127s, Ankara.
  • Rohsenow, W.M., Hartnett, J.P., 1973. Handbook of Heat Transfer. McGraw-Hill Book Company, 1502p. New York.
  • Smith, M.K., Wattelet, J. P., ve Newell, T.A., 1992. A Study of evaporation heat transfer coefficient correlations at low heat and mass fluxes for pure refrigerants and refrigerant mixtures. Air Conditioning and Refrigeration Centre, Universitiy of Illinois at Urbana, Champaign, USA, ACRC TR - 32.
  • Torrella, E., Navarro-Esbri, J., Cabello, R., 2006. Boiling heat transfer coefficient variation for R407C inside horizontal tubes of a refrigerating vapour-compression plant’s shell- and-tube evaporator. Applied Energy, 83 (3), 239 - 252.