Farklı tork değerleri altında kardan mili istavroz dayanımının sonlu elemanlar ve analitik yöntem ile belirlenmesi ve kıyaslanması

Kardan milleri motor veya dişli kutularından aldığı torku dönme hareketiyle diferansiyel veya başka elemana ileten güç aktarma organlarıdır. Araç hareketi ve farklı yol koşulları göz önüne alındığında tork aktarımını kardan milinin sahip olduğu boy kompanzasyonu ve açısal hareket kabiliyeti ile sağlanmaktadır. Açısal hareket, kardan mili mafsal grubu ile sağlanır. Mafsal grubunun bir elemanı olan, kulaklı parçaları birbirlerine bağlayan istavroz gövdesi araca uygun kardan mili seçiminde ilk sırada göz önüne alınmaktadır. Zira diğer kardan mili parçalarına nazaran daha yüksek gerilmeler altında çalışmaktadır. Bu nedenle istavroz gövdesinin maruz kaldığı yük ve dolayısıyla oluşacak gerilimlere mukavim yapıda olması gerekmektedir. Çalışmada analitik ve sonlu elemanlar analiz (FEA) metotları kullanılarak farklı tork değerleri altında kardan mili istavrozunun kritik kesiti üzerinde oluşan gerilme değerleri tespit edilmiş ve her iki yöntem için değerler kıyaslanmıştır. Kıyaslama neticesinde her iki yöntem ile elde edilen gerilme değerlerinin %2-%3 aralığında sapma ile birbirine yakın olduğu gözlemlenmiştir. Sonlu elemanlar analizinin analitik yönteme kıyasla daha uzun uygulama süreleri gerektirdiği ve her iki yöntem ile elde edilen gerilme değerlerinin birbiri ile örtüştüğü göz önüne alındığında, kardan mili istavrozu ön tasarım çalışmalarında analitik yöntemin kullanılabileceği ve bu sayede zaman açısından avantaj sağlayacağı tespit edilmiştir.

Determination and comparison of the strength of the universal joint on driveshaft for various torque values, by finite element analysis and analytical method

Driveshafts are power transmission elements that transmit the torque received from the engine or gearboxes to the differential or another element. When considered vehicle movement and different road conditions, transmission of torque is provided by the ability of length compensation and angular movement of the driveshaft. Angular movement is provided by the driveshaft joint group. The cross-body in a joint group, connects opposing yoke parts to each other, which is considered for selection of suitable driveshaft for a vehicle. Because it is exposed to higher stresses compared to other driveshaft parts during running. Thus, the cross-body should be resistant to the load and the stresses occurred. In the study, stress values on the critical section of the cross-body under different torque values were determined by using analytical and finite element analysis (FEA) methods, and the values obtained by both methods were compared to each other. As a result of the comparison, it was observed that the stress values obtained by both methods were highly close to each other within a difference between 2% and 3%. Finite element analysis requires longer application time compared to the analytical method. Considering that the stress values obtained by both methods overlap with each other, it has been determined that the analytical method can be used at the beginning of the cross-body design of the driveshaft due to its short application time.

___

  • [1] Oh SJ, Woscek JT. Analysis of rzeppa and cardan joints in monorail drive train system. İnternational Journal of Mechanical Engineering and Robotics Research, 4(1), 1-11, 2015.
  • [2] Palma P, Tiussi G, Donadon A, Raffaglio Y, Luca AD, Leitner M, Grün F, Benasciutti D. Fatigue assessment of universal cardan joint based on laboratory specimen tests. Part of the ABM Week, Rio de Janeiro, RJ, Brazil, 17-21 Ağustos, 2015.
  • [3] Seherr-Thoss H, Schmelz F, Aucktor E. Universal Joints and Driveshafts, 1, 2006.
  • [4] Sen O, Kahyalar MC, Structural analysis of yoke part in design of driveshaft. International Journal of Automotive Technology, 4(4), 248-252, 2020.
  • [5] Solanke SG, Bharule AS. An investigation on stress distribution for optimization of yoke in universal joint under variable torque condition. International Journal of Mechanical Engineering and Robotics Research, 3(2), 136-142, 2014.
  • [6] Živković K, Ivanović L, Stojanović B. The effect of geometry on the stress distribution of cross shaft. IRMES International Scientific Conference, Zlatibor, Sırbistan, 27-28 Nisan 2011.
  • [7] Kashyap K, Mahto DG. Analysis of Hooks Joint Using Ansys by Von Mises method. International Journal of Engineering and Advanced Technology (IJEAT), 3(3), 304-305, 2014.
  • [8] Kawale V, Patil G, Pune S. Design Methodology of Drive Shaft. International Journal of Engineering and Advanced Technology (IJEAT), 7(3), 1416-1424, 2018.
  • [9] Muley AA, Sheikh MJ, Thakre GV. Faılure Analysıs Of Yoke Joınt Assembly. International Research Journal of Engineering and Technology (IRJET). 3(10), 762-767, 2016.
  • [10] Ivanović L, Živković DJK, Stojanovic B. Cross Shaft Design From the Aspect of Capacity. Scientific Technical Review. 61(1), 56-63, 2011.
  • [11] Avrigean E, Pascu AM, Oleksik VS. Study of the Cardan Cross Using the Experimental and Analytical Method. 25th DAAAM International Symposium on Intelligent Manufacturing and Automation, Vienna, Ağusturya, 23-30 Kasım 2014.
  • [12] Kahyalar MC, Şen O. Kardan Milli İstavroz Gövdesinde Dayanıklılığın Arttırılması ve Yapısal Analiz ile Doğrulanması. Üçüncü Ulusal Üniversite-Sanayi İş Birliği, Ar-Ge ve İnovasyon Kongresi, Manisa, Türkiye, 29 Aralık 2020.
  • [13] Pilkey WD, Peterson's Stress Concentration factors. 2nd Ed. John Wıley & Sons, 1997.