Bir fotovoltaik termal (PV/T) kollektörün matematiksel modellemesi

Fotovoltaik-termal (PV/T) kollektörlerin performansı bir süredir hem hesaplamalı hem de deneysel olarak araştırılmış olsa da, daha önceki araştırmalarda oluşturulan termal modeller çoğunlukla yıllık verimleri tahmin etmek için kararlı hal modelleriydi. Bu çalışmada fotovoltaik (PV) hücreler ve termal toplayıcı, PV/T toplayıcıyı oluşturmak için bir sisteme entegre edilmiştir ve su-etilen glikol, PV hücrelerinin sıcaklığını düşürmek için bir soğutucu olarak kullanılmıştır. Bu çalışmanın amacı, su-etilen glikol bazlı bir PV/T toplayıcıyı sayısal olarak analiz etmektir. Zamana bağlı dinamik analizler MATLAB yazılım programı kullanılarak yapılmıştır. Ayrıca PV/T yüzey sıcaklığının, akışkan çıkış sıcaklığının ve elde edilen elektriksel gücün zamanla değişimleri incelenmiştir.

Mathematical modeling of a photovoltaic thermal (PV/T) collector

Even though the performance of photovoltaic/thermal (PV/T) panels had been examined both computationally and experimentally for some time, the thermal models created in earlier research were mostly steady-state models for estimating the annual yields. In this study, the solar thermal collector and photovoltaic (PV) cells are combined to create the PV/T collector, and water-ethylene glycol is utilized as a coolant to lower the temperature of the PV panels. The goal of this study is to analyze a water-ethylene glycol-based PV/T collector numerically. Time-dependent dynamic analyzes were performed using the MATLAB software program. Investigations were also done into how the electrical power produced and the temperatures of the fluid outlet and PV/T surface changed over time. As a result of the annual analysis, the maximum power of PV/T is calculated as 155 W. Also, the maximum surface temperature of PV/T panel’s is 56.62°C.

___

  • [1] GEPA (Güneş Enerjisi Potansiyeli Atlası) https://gepa.enerji.gov.tr/MyCalculator/ (Date of Access: 26.08.2022).
  • [2] Soytürk Yıldırım G. Investigation of the use of solar energy in the storage and heating applications with phase changing material. MSc Thesis, Süleyman Demirel University, Isparta, Turkey, 2018 (In Turkish).
  • [3] Kazemian A, Taheri A, Sardarabadi S, Ma T, Fard MP, Peng J. Energy, Exergy and Environmental Analysis of Glazed and Unglazed PVT System Integrated with Phase Change Material: An Experimental Approach. Solar Energy, 201, 178-189, 2020.
  • [4] Ma T, Yang H, Zhang Y, Lu L, Wang X. Using Phase Change Materials in Photovoltaic Systems for Thermal Regulation and Electrical Efficiency Improvement: A Review and Outlook. Renewable and Sustainable Energy Reviews, 43, 1273-1284, 2015
  • [5] Babayan M, Mazraeh AE, Yari M, Niazi NA, Saha SC. Hydrogen Production with a Photovoltaic Thermal System Enhanced by Phase Change Materials, Shiraz, Iran Case Study. Journal of Cleaner Production, 215, 1262-1278, 2015
  • [6] Gül M, Akyüz E. Hydrogen Generation from a Small-Scale Solar Photovoltaic Thermal (PV/T) Electrolyzer System: Numerical Model and Experimental Verification, Energies, 13, 2997, 2020.
  • [7] Sachit FA, Rosli MAM, Tamaldin N, Misha S, Abdullah AL. Nanofluids Used in Photovoltaic Thermal (PV/T) Systems: A Review. International Journal of Engineering & Technology, 7, 599-611, 2018.
  • [8] Zulkepli A, Ibrahim H, Alias A, Azran Z, Basrawi F. Review on the recent developments of photovoltaic thermal (PV/T) and proton exchange membrane fuel cell (PEMFC) based hybrid system. MATEC Web of Conferences, 2016.
  • [9] Solimpeks. https://www.solimpeks.com.tr/ (Date of Access: 25.03.2022)
  • [10] Wolf M. Performance Analyses of Combined Heating and Photovoltaic Power Systems for Residences, Energy Conversion, 16 (1), 79-90, 1976.
  • [11] Rejeb Q, Dhaou H, Jemni A. A Numerical Investigation of a Photovoltaic Thermal (PV/T) Collector. Renewable Energy, 77, 43-50, 2015
  • [12] Simonetti R, Molinaroli L, Manzolini G. Development and Validation of a Comprehensive Dynamic Mathematical Model for Hybrid PV/T Solar Collectors. Applied Thermal Engineering, 133, 543-554, 2018.
  • [13] Joy B, Zachariah R. Experimental Investigation and Comparative Study of PV Thermal Water- Ethylene Glycol Collector and PV System. International Journal of Current Engineering and Scientific Research (IJCESR), 2(9) ,2394-0697, 2015.
  • [14] Jia Y, Ran F, Zhu C, Fang G. Numerical Analysis of Photovoltaic-Thermal Collector Using Nanofluid as a Coolant. Solar Energy, 196, 625-636, 2020.
  • [15] Benli F. Experimental comparison of photovoltaic (PV) and photovoltaic-thermal (PV-T) collectors. MSc Thesis, Osmaniye Korkut University, 2018 (In Turkish).
  • [16] Sakellariou E, Axaopoulos P. An Experimentally Validated, Transient Model for Sheet and Tube PVT Collector. Solar Energy, 174, 709-718, 2018.
  • [17] Engineering Equation Solver (EES). https://fchartsoftware.com/ees/ (Date of Access: 25.03.2022)
  • [18] Çengel YA, Ghajar A. Heat and Mass Transfer, McGraw Hill Education, 5e, 2014.
  • [19] Kalogirou SA. Solar Energy Engineering Processes and System, Elsevier, 2015.
  • [20] Yazdanifard F, Ebrahimnia-Bajestan E, Ameri Mehran. Investigating the Performance of a Water-Based Photovoltaic/Thermal (PV/T) Collector in Laminar and Turbulent Flow Regime. Renewable Energy, 99, 295-306, 2016.
  • [21] Energy Economics, Energy Charting Tool. https://www.bp.com/en/global/corporate/energyeconomics/energy-charting-tooldesktop.html (Date of Access: 20.03.2022).
  • [22] Duffie JA, Beckman WA. Solar Engineering of Thermal Processes (4th ed.). New York: Wiley, 2013.
  • [23] Kim JH, Kim JT. Comparison of Electrical and Thermal Performances of Glazed and Unglazed PVT Collectors. International Journal of Photoenergy, 2012.