1.2367 Takım Çeliğinden İmal Edilmiş Enjeksiyon Yolluk Burcunda Hasar Analizi ve Geometrik Tasarımda İyileştirme ile Hasarı Önleme

Takım çeliği şekillendirme ve enjeksiyon kalıplarının/ekipmanlarının imalatında yaygın kullanılan bir malzemedir. Enjeksiyon ve şekillendirme kalıpları, çalışma sırasında tekrarlı yüksek basınç ve ısıya maruz kalmaktadırlar ve bu çalışma koşulu kalıplarda beklenmeyen zamanda çatlak oluşumuna sebep olmaktadır. Sürekli ve tekrarlı yüklerin devamında ise başlayan çatlağın ilerlemesi sonucu kalıbın işlevini yerine getirememesi ve/veya imalatın durmasına neden olmaktadır. Bu çalışmada, tekrarlı mekanik ve ısıl yükleme neticesinde çatlayarak fonksiyonunu yitiren 1.2367 sıcak iş takım çeliği enjeksiyon yolluk burcunun, hasarının oluşum nedeni bir dizi sonlu eleman analizi ve optik araştırma ile belirlenmeye çalışılmış ve oluşan bu çatlak hasarını önlemek için enjeksiyon yolluk burcu tasarımında değişikliğe gidilmiştir. Sonuç olarak, tasarımda yapılan iyileştirme ile enjeksiyon yolluk burcunda meydana gelen gerilmelerde düşüş görülmüş ve mekanik yüklere karşı dayanımında iyileşme elde edilmiştir.

FAILURE ANALYSIS IN INJECTION GATE BRUSH MANUFACTURED FROM 1.2367 TOOL STEEL AND PREVENTATION OF FAILURE WİTH DESIGN IMPROVEMENT

Tool steel is a widely used material in forming and manufacturing of injection molds / equipments. Injection and forming dies are subjected to repetitive high pressure and heat during operation, which leads to unexpected formation of cracks in the die. In case of continuation of continuous and repeated loads, starting crack causes the die lose its function or stopping injection process. In this study, a series of finite element analyzes and optical investigations have been carried out to determine the cause of the damage of 1.2367 hot work tool steel injection gate brush which has lost its function as a result of repetitive mechanical and thermal loading, and the design of the injection gate brush has been changed to prevent this damage. As a result of new designing of injection gate brush, a decrease in stresses of gate brush under working was observed. Hereby, the strength of injection gate brush was improved.

___

  • 1. Attaullah. (Ayooq), Arain, 1999. Heat Treatment and Toughness Behavior of Tool Steels (D2 and H13) for Cutting Blades. Master theses of Applied Science Graduate Department of Metallurgy and Material Science University of Toronto, Toronto, ABD.
  • 2. B. Yalçın, Yüksek Hız Çeliğinden İmal Edilmiş Kesici Takımların TiN Kaplanması ve Kaplamanın Takım Performansı Üzerine Etkilerinin Araştırılması, SDÜ. Fen Bil. Enstitüsü, Makine Eğt. Anabilim Dalı, 2002.
  • 3. Roberts, A.G., Cary, A.R., Tool Steels, Fourth Edition, American Society for Metal, Metal Park, Ohio, USA, 1980.
  • 4. Christian Højerslev, Tool Steels, Risø National Laboratory, Roskilde, Danka Services International A/S, 2001.
  • 5. https://steelselector.sij.si/data/pdf/UTOPMO7.pdf, Son erişim tarihi: 01.04.2019
  • 6. Eva Martínez González, Detection of Failure Mechanisms of Tool Steels by means of Acoustic Emission Technique, PhD Thesis of Mechanical Engineering, Mechanical Engineering Department Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, 2013.
  • 7. Ingrid Picas, Mechanical behaviour of tools for shearing Ultra High-Strength Steels: influence of the microstructure on fracture and fatigue micro-mechanisms of tool steels and evaluation of micro-mechanical damage in tools, PhD Thesis of Materials and Metallugy Engineering, Universitat Politècnica de Catalunya, Fundació CTM Centre Tecnològic. Spain, 2012.
  • 8. Yokoi D, Tsujii N, Fukaura K. Effects of tempering temperature and stress amplitude on low-cycle fatigue behavior of a cold work tool steel, Materials Science Research International, 9 (3) (2003) 216-222.
  • 9. Alfredsson B and Olsson M. Inclined standing contact fatigue, Fatigue Fract. Engng. Mater. Struct., 26 (2003) 589-602.
  • 10. Hoyle, G. High Speed Steels, 1988 Butterworths
  • 11. Højerslev, C. (2001). Tool steels. Roskilde: Risø National Laboratory. Denmark. Forskningscenter Risoe. Risoe-R, No. 1244(EN).
  • 12. Pippels, E. et al. Microstructure and Nanochemistry of carbide Precipitatesin High-Speed Steel S 6-5-2-5, Materials Characterization 43:41-55 (99).
  • 13. Vogel, C. et al. Metallurgi for Ingeniører 6th edit. 1993 Geller, Y. Tool Steels, Mir Publishers Moscow, 1978.
  • 14. Hoyle, G. High Speed Steels, 1988 Butterworths
  • 15. V. Seriacopi, N.K. Fukumasu, R.M. Souza, I.F. Machad , Finite element analysis of the effects of thermo-mechanical loadings on a tool steel microstructure, Engineering Failure Analysis 97 (2019) 383–298.
  • 16. Patrik Schwingenschlögla, Philipp Niederhoferb, MarionMerklein, 2019. Investigation on basic friction and wear mechanisms within hot stamping considering the influence of tool steel and hardness, Wear, Volumes 426–427, Part A, Pages 378-389.
  • 17. Sanja Šolić, Bojan Podgornik, Vojteh Leskovšek, 2018. The occurrence of quenching cracks in high-carbon tool steel depending on the austenitizing temperature, Engineering Failure Analysis 92 (2018) 140–148.
  • 18. Ingrid Picas, Núria Cuadrado, Daniel Casellas, Alexey Goez, Luís Llanes, 2010. Microstructural effects on the fatigue crack nucleation in cold work tool steels, Procedia Engineering 2 (2010) 1777–1785.
  • 19. İlter Özgür, Alüminyum enjeksiyon döküm kalıplarında sıvı metal-kalıp etkileşimine yüzey işlemlerinin etkisi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 1-73, 2008.
  • 20. Bishenden W. and Bhola R., 2001. Die temperature control, World of the die casting, 112, 51-62.
  • 21. Klobcar D., Tusek J. and Taljat B., 2007. Thermal fatigue of materials for die casting tooling, Materials science and engineering, 90, 110-115.
  • 22. TMMOB Metalurji Mühendisleri Odası, Metal Enjeksiyon Kalıplarından Beklentiler ve Hasar Mekanizmaları, Müh. Aziz Hatman ASSAB Çelik ve Isıl İşlem A.Ş., 28-40.
  • 23. Yeşildal, R. The Effect of Heat Treatments on the Fatigue Strength of H13 Hot Work Tool Steel, Preprints, 1-13, 2018.