SPI ve SPEI Yöntemleri ile Kuraklık Araştırması: Kırıkkale Örneği

Kuraklık, çeşitli sosyal ve çevresel etkileri olan en önemli doğal afetlerden biridir. Bu nedenle, kuraklığı izlemek için özellikle uygun bir indeks seçmek çok önemlidir. Standartlaştırılmış Yağış İndisi (SPI) ve Standartlaştırılmış Yağış Evapotranspirasyon İndisi (SPEI) kuraklık izlemede yaygın olarak kullanılmaktadır. Bu çalışmada, yarı kurak özelliklere sahip Kırıkkale ilinde kuraklığın gelişimini ve özelliklerini incelemek amacıyla SPI ve SPEI yöntemleri kullanılarak kuraklık analizi yapılmıştır. Kırıkkale meteoroloji istasyonundan 1963-2018 yılları arasında aylık yağış ve sıcaklık verileri kullanılarak 1, 3, 6, 9 ve 12 aylık zaman ölçeklerinde SPI ve SPEI değerleri hesaplanmıştır. SPEI hesaplamasında potansiyel evapotranspirasyon (PET) değerleri hesaplanırken Thornthwaite ve Hargreaves modelleri kullanılmış ve iki farklı SPEI değeri elde edilmiştir. Sonuç olarak aynı zaman ölçeğinde tüm endeksler arasında yüksek korelasyon değerleri elde edilmiştir. SPI ve SPEI yöntemlerinin çalışma alanında kuraklığın tespiti ve izlenmesinde uygulanabilir olduğu sonucuna varılmıştır

Drought Investigation Using SPI and SPEI Methods: A Case Study in Kırıkkale

Drought is one of the most important natural disasters with various social and environmental effects. Therefore, it is very important to choose a particularly suitable index for monitoring drought. Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) are widely used in drought monitoring. In this study, drought analysis was carried out using SPI and SPEI methods in order to examine the development and characteristics of drought in the city of Kırıkkale, which has semi-arid characteristics. SPI and SPEI values were calculated on 1, 3, 6, 9 and 12-month time scales by using monthly precipitation and temperature data from Kırıkkale meteorology station between 1963 and 2018. While calculating the potential evapotranspiration (PET) values in the SPEI calculation, Thornthwaite and Hargreaves models were used and two different SPEI values were obtained. As a result, high correlation values were obtained between all indices in the same time scale. It has been concluded that SPI and SPEI methods are applicable in the detection and monitoring of drought in the study area.

___

  • Abramowitz, M., & Stegun, I.A. (1965). Handbook of mathematical formulas, graphs and mathematical tables. Dover Publications Inc, New York.
  • Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements”, FAO Irrigation and Drainage Paper 56, Rome.
  • Anisfeld, S.C. (2010). Water resources. Island Press, Washington, DC.
  • Bacanli, U.G., & Kargi, P.G. (2019). Drought analysis in long and short term periods: Bursa case”, Journal of Natural Hazards and Environment, vol. 5, no. 1, pp. 166-174.
  • Beguería, S., Vicente-Serrano, S.M., Reig, F., & Latorre, B. (2013). Standardized precipitation evapotranspiration ıindex (SPEI) Revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol., vol. 34, pp. 3001–3023.
  • Beyazıt, M., & Önöz, B. (2008). Taşkın ve kuraklık hidrolojisi. Nobel Yayın Dağıtım, s. 212-215, Ankara.
  • Burton, I., Kates, R.W., & White, G.F. (1978). The environment as hazard”, Oxford University Press, New York.
  • Byun, H.R., & Wilhite, D.A. (1999). Objective quantification of drought severity and duration. Journal of Climate, vol. 12, no. 9, pp. 2747-2756.
  • Changnon, S.A., & Easterling, W.E. (1989). Measuring drought impacts:the Illinois case. Water Resour. Bull., vol. 25, pp. 27–42.
  • Çamalan, G., Akgündüz, A.S., Ayvacı, H., Çetin, S., Arabacı, H., & Coşkun, M. (2017). SPEI indisine göre Türkiye geneli kuraklık değişim ve eğilim projeksiyonları. IV. Türkiye İklim Değişikliği Kongresi, TİKDEK 5-7 Temmuz, İstanbul.
  • Çobaner, M., Çıtakoğlu, H., Haktanır, T., & Yelkara, F. (2018). Determination of optimum Hargreaves-Samani equation for Mediterranean region. Dicle University Journal of Engineering, vol. 7, no. 2, pp. 181–190.
  • Droogers, P., & Allen, R.G. (2002). Estimating reference evapotranspiration under inaccurate data condition. Journal of Irrigation and Drainage Systems, vol. 16, no. 1, pp. 33-45.
  • Elfatih, A., Eltahir, B., & Yeh, P.J.F. (1999). On the asymmetric response of aquifer water level to floods and droughts in Illinois. Water Resour. Res., vol. 35, pp. 1199–1217.
  • Gibbs, W.J., & Maher, J.V. (1967). Rainfall deciles as drought indicators. Bureau of Meteorology Bulletin, 48, Melbourne, Australia.
  • Guttman, N.B. (1999). Accepting the standardized precipitation index: a calculation algorithm. Journal of American Water Resources Association, vol. 35, no. 2, pp. 311-322.
  • Hargreaves, G.H., & Samani, Z.A. (1985). Reference cropevapotranspiration from temperature. Appl. Eng. Agric., vol. 1, no. 2, pp. 96-99.
  • IPCC (2001). Climate Change 2001: The scientific basis. contribution of working group I to the third assessment report of the ıntergovernmental panel on climate change [Houghton, J.T., et al. (eds.)]. Cambridge University Press: Cambridge and New York.
  • IPCC (2007). Climate Change 2007: The physical science basis. contribution of working group I to the fourth assessment report of the ıntergovernmental panel on climate change [Solomon, S., et al. (eds.)]. Cambridge University Press: Cambridge and New York.
  • IPCC (2013). Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the ıntergovernmental panel on climate change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bexand P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdomand New York, USA.
  • IPCC (2019). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. 234 Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.
  • Kadıoğlu, M. (2008). Kuraklık Kıranı Risk Yönetimi. Ed: Kadıoğlu, M. ve Özdamar, E., Afet zararlarını azaltmanın temel ilkeleri. JICA Türkiye Ofisi Yayınları No: 2, s. 277-300, Ankara.
  • Kassaye, A.Y., Shao, G., Wang, X., & Wu, S. (2021). Quantification of drought severity change in Ethiopia during 1952–2017. Environ. Dev. Sustain., vol. 23, no. 4, pp. 5096–5121.
  • Kumanlioglu, A.A. (2020). Characterizing meteorological and hydrological droughts: A case study of the Gediz River Basin, Turkey”, Meteorological Applications, vol. 27, no. 1, pp. 1-17.
  • Li, X., He, B., Quan, X., Liao, Z., & Bai, X. (2015). Use of the standardized precipitation evapotranspiration index (SPEI) to characterize the drying trend in southwest China from 1982–2012. Remote Sens., vol. 7, no. 8, pp. 10917-10937.
  • Liu, L., Yang, H., Hocker, J.E., Shafer, M.A., Carter, L.M., Gourley, J.J., Bednarczyk, N.C., Yong, B., & Adhikari, P. (2012). Analyzing projected changes and trends of temperature and precipitation in the southern USA from 16 downscaled global climate models. Theoretical and Applied Climatology, vol. 109, pp. 345–360.
  • Mathbout, S., Lopez-Bustins, J.A., Martin-Vide, J., Bech, J., & Rodrigo, F.S. (2018). Spatial and temporal analysis of drought variability at several time scales in Syria during 1961–2012. Atmos. Res., vol. 200, pp. 153–168.
  • Mckee, T.B., Doesken, N.J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. 8th Conference on Applied Climatology, 17-22 January, pp.179-184, Anaheim, CA.
  • Mishra, A.K., & Singh, V.P. (2010). A review of drought concepts. Journal of Hydrology, vol. 391, pp. 202-216.
  • Ogunrinde, A.T., Olasehinde, D.A., & Olotu, Y. (2020). Assessing the sensitivity of standardized precipitation evapotranspiration index to three potential evapotranspiration models in Nigeria. Sci. Afr., vol. 8, pp. 1-16.
  • Palmer, W.C. (1965). Meteorological drought. Research Paper No. 45, U.S. Department of Commerce Weather Bureau, Washington, D.C.
  • Pandey, R.P., & Ramasastri, K.S. (2001). Relationship between the commonclimatic parameters and average drought frequency. Hydrol. Processes, vol. 15, pp. 1019–1032.
  • Pei, Z., Fang, S., Wang, L., & Yang, W. (2020). Comparative analysis of drought indicated by the SPI and SPEI at various timescales in inner Mongolia, China. Water, vol. 12, no. 7, pp. 1-20.
  • Salvacion, A.R. (2021). Mapping meteorological drought hazard in the Philippines using SPI and SPEI”, Spat. Inf. Res., vol. 29, no. 6, pp. 949–960.
  • Şen, Z. (2005). İklim değişikliği ve su kaynaklarına etkisi. 22 Mart Dünya Su Günü İklim Değişikliğinin Su ve Enerji Kaynaklarımıza Etkisi Paneli, İstanbul.
  • Shaowei, Z., Hongchao, Z., Pengcheng, R., Guangjie, X., Bangdong, L., Wencheng, D., & Liying, W. (2013). Application of standardized precipitation evapotranspiration index in China”, Clim. Environ. Res., vol. 18, pp. 617–625.
  • Shukla, S., & Wood, A. (2008). Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters, vol. 35, no. 2, pp. 1-7.
  • Sırdaş, S. (2002). Meteorolojik kuraklık modellemesi ve Türkiye uygulaması. Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul.
  • SYGM, (2016). İklim değişikliğinin su kaynaklarına etkisi projesi, proje nihai raporu. T.C. Tarım ve Orman Bakanlığı Su Yönetimi Genel Müdürlüğü, Ankara. https://www.tarimorman.gov.tr/SYGM/Belgeler/iklim%20de%C4%9Fi%C5%9Fikli%C4%9Finin%20su%20kaynaklar%C4%B1na%20etkisi/Iklim_NihaiRapor.pdf.
  • Thom, H.C.S. (1958). A Note on the gamma distribution. Mon. Weather Rev., vol. 86, pp. 117-122.
  • Thornthwaite, C.W. (1948). An approach toward a rational classification of climate. Geographical Review, vol. 38, no. 1, pp. 55-94.
  • Tirivarombo, S., Osupile, D., & Eliasson, P. (2018). Drought monitoring and analysis: standardised precipitation evapotranspiration index (SPEI) and standardised precipitation index (SPI)” Phys. Chem. Earth Parts A/B/C, vol. 106, pp. 1–10.
  • Tsakiris, G., & Vangelis, H. (2005). Establishing a drought index incorporating evapotranspiration. European Water, vol. 9, no. 10, pp. 3-11.
  • Türkeş, M. (2008a). Küresel iklim değişikliği nedir? Temel kavramlar, nedenleri, gözlenen ve öngörülen değişiklikler. İklim Değişikliği ve Çevre, c. 1, s. 1., s. 45-64.
  • Türkeş, M. (2008b). İklim değişikliği ve küresel ısınma olgusu: bilimsel değerlendirme. Yay. Haz; E.Karakaya, s. 21-57 Küresel Isınma ve Kyoto Protokolü: İklim Değişikliğinin Bilimsel, Ekonomik ve Politik Analizi. Bağlam Yayınları No: 308, İstanbul.
  • Vicente-Serrano, S.M., & Lopez-Moreno J.I. (2005). Hydrological response to different time scales of climatological drought: An evaluation of the standardized precipitation index in a mountainous mediterranian basin. Hydrology and Earth System Sciences, vol. 9, pp. 523-533.
  • Vicente-Serrano, S.M., Beguería, S., & López-Moreno, J.I. (2010). A Multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23, pp. 1696-1718.
  • Wang, H., Pan, Y., & Chen, Y. (2017). Comparison of three drought ındices and their evolutionary characteristics in the arid region of northwestern China. Atmos. Sci. Lett., vol. 18, no. 3, pp. 132-139.
  • Wilhite, D.A., & Glantz, M.H. (1987). Understanding the drought phenomenon: the role of definitions. Water International, vol. 10, no. 3, pp. 111–120.
  • Willeke, G., Hosking, J., Wallis, J.R., & Guttman, N.B. (1994). The national drought atlas. U.S. Army Corps of Engineers Institute for Water Resources Report 94.
  • WMO (1997). Extreme agrometeorological events. CagM-X Working Group, Geneva.
  • Wu, H., Hayes, M.J., Welss, A., & Hu, Q. (2001). An evaluation the standardized precipitation index, the China-z index and the statistical Z-Score. International Journal of Climatology, vol. 21, no. 6, pp. 745-758.
  • Yacoub, E., & Tayfur, G. (2020). Spatial and Temporal of variation of meteorological drought and precipitation trend analysis over whole Mauritania. J. Afr. Earth Sci., vol. 163, no. 1, pp. 1-12.
  • Yuan, Y., & Zhou, W. (2008). Influences of the Indian Ocean Dipole on the Asian summer monsoon in the following year. International Journal of Climatology, vol. 28, no. 14, pp. 1849–1859.
  • Yüce, M.İ., & Eşit, M. (2020). Determination of the drought risk map of Ceyhan Basin by SPI and SPEI methods. Su Kaynakları, c. 5, s. 2, pp. 1–8.
  • Zhang, Q., Qi, T., Singh, V.P., Chen, Y.D. & Xiao, M. (2015). Regional frequency analysis of droughts in China: A multivariate perspective. Water Resour. Manag., vol. 29, pp. 1767–1787.