TBL-MAC: Doğrusal Kablosuz Algılayıcı Ağlar için Yeni Bir Ortam Erişim Kontrol Protokolü

Kablosuz Algılayıcı Ağların özel bir türü olarak literatürde yerini almış olan Doğrusal Kablosuz Algılayıcı Ağlar (DKAA)’da ağ yapısında düğümler sıralı olarak dizilmekte ve iletişim ortamı doğrusal düzende oluşturulmaktadır. Bu tür uygulamalar için geliştirilmiş Ortam Erişim Kontrol (OEK) protokollerinin doğrusal dizilim karakteristiğine uygun olarak tasarlanması önem arz etmektedir. Çünkü ağdaki düğüm sayısı artıkça paketlerin uçtan uca gecikmesi ve koordinatör düğüme yakın olan düğümlerin veri trafiği çok yüksek seviyelere ulaşmaktadır. Ayrıca artan düğüm sayısı, çarpışma ve sıkışıklık ihtimalini de artırmaktadır. Tüm bu sebeplerden dolayı doğrusal topolojiler için geliştirilen protokollerin gecikme duyarlı, sorunsuz bağlanabilen ve hatasız veri iletimi yapan karakteristiklere sahip olması beklenmektedir. Bu çalışmada, yukarıda bahsedilen DKAA problemlerini minimuma indirgemek üzere etkili ve zor fiziksel şartlarda ağın bağlantı sürekliliğinin üstesinden gelen çevik bir OEK protokolü olan TBL-MAC geliştirilmiştir. Bu çalışma ile Doğrusal Ağ haberleşmesine katkı sunacak birçok yeniliğin literatüre kazandırılması hedeflenmiş, protokolün benzetimi yapılarak önerilerin geçerliliği test edilmiştir. Yapılan benzetim sonuçlarına göre TBL-MAC protokolünün içerdiği yöntemlerin kabul göreceği ve çalışmanın araştırmacılara yeni bakış açıları kazandıracağı düşünülmektedir. 

TBL-MAC: A New Media Access Control Protocol Design for Linear Wireless Sensor Networks

In Linear Wireless Sensor Networks (LWSNs), which has taken its place in the literature as a special type of Wireless Sensor Networks, the nodes are arranged in a sequential manner in the network structure and the communication environment is created in a linear order. It is important that the Media Access Control (MAC) protocols to be developed for such applications are designed in accordance with the linear sequence characteristics. Because as the number of nodes in the network increases, the end-to-end delay of the packets and the data traffic of the nodes close to the coordinator node reach very high levels. In addition, increasing the number of nodes increases the probability of collision and congestion. For all these reasons, protocols developed for linear topologies are expected to have characteristics that are delay sensitive, can be connected seamlessly, and transmit data to the center without error. In this study, TBL-MAC, an agile MAC protocol that effectively overcomes the connection continuity of the network in difficult physical conditions, has been developed in order to minimize the above-mentioned LWSN problems. With this study, it was aimed to bring many innovations that will contribute to Linear Network communication to the literature, and the validity of the suggestions was tested by simulating the protocol. According to the simulation results, it is thought that the methods included in the TBL-MAC protocol will be accepted and the study will bring new perspectives to the researchers. 

___

  • Ari, D., Cibuk, M., & Ağgün, F. (2018). A New Time Division Method for Linear Wireless Sensor Networks. In 1st INTERNATIONAL ENGINEERING AND TECHNOLOGY SYMPOSIUM (pp. 1166–1170). Batman, Turkey.
  • Caneva, D. De. (2010). A Synchronous and Deterministic MAC Protocol for Wireless Communications on Linear Topologies. Int’l J. of Communications, Network and System Sciences, 03(12), 925–933. https://doi.org/10.4236/ijcns.2010.312126
  • Chen, H., Tse, C. K., & Feng, J. (2009). Impact of topology on performance and energy efficiency in wireless sensor networks for source extraction. IEEE Transactions on Parallel and Distributed Systems, 20(6), 886–897. https://doi.org/10.1109/TPDS.2009.14
  • Çıbuk, M., Arı, D., Ağgün, F., & Budak, Ü. (2021). Investigation of failed node method to support healthy communication for linear wireless sensor networks. In 1st Advanced Engineering Days (AED) (pp. 41–46). Mersin, Turkey. Retrieved from http://aed.mersin.edu.tr/wp-content/uploads/2021/12/AED1.pdf
  • Du, S., Saha, A. K., & Johnson, D. B. (2007). RMAC: A Routing-Enhanced Duty-Cycle MAC Protocol for Wireless Sensor Networks. In IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications (pp. 1478–1486). IEEE. https://doi.org/10.1109/INFCOM.2007.174
  • Fang, C., Liu, H., & Qian, L. (2011). LC-MAC: An efficient MAC protocol for the long-chain wireless sensor networks. Proceedings - 2011 3rd International Conference on Communications and Mobile Computing, CMC 2011, 495–500. https://doi.org/10.1109/CMC.2011.65
  • Jawhar, I., & Mohamed, N. (2009). A hierarchical and topological classification of linear sensor networks. In 2009 Wireless Telecommunications Symposium, WTS 2009. IEEE. https://doi.org/10.1109/WTS.2009.5068941
  • Jiang, H., Wu, J., Chen, L., Chen, S., & Leung, H. (2009). A Reliable and High-Bandwidth Multihop Wireless Sensor Network for Mine Tunnel Monitoring. IEEE Sensors Journal, 9(11), 1511–1517. https://doi.org/10.1109/JSEN.2009.2022878
  • Karveli, T., Voulgaris, K., Ghavami, M., & Aghvami, A. H. (2009). DiS-MAC: A MAC protocol for sensor networks used for roadside and highway monitoring. 2009 International Conference on Ultra Modern Telecommunications and Workshops. https://doi.org/10.1109/ICUMT.2009.5345439
  • Lai, T. T. Te, Chen, W. J., Li, K. H., Huang, P., & Chu, H. H. (2012). TriopusNet: Automating wireless sensor network deployment and replacement in pipeline monitoring. IPSN’12 - Proceedings of the 11th International Conference on Information Processing in Sensor Networks, 61–71. https://doi.org/10.1145/2185677.2185686
  • Lee, E., Jwa, J. W., & Kim, H. (2013). MFT-MAC: A duty-cycle MAC protocol using multiframe transmission for wireless sensor networks. International Journal of Distributed Sensor Networks, 2013. https://doi.org/10.1155/2013/858765
  • Low, K. S., & Talampas, M. C. R. (2017). Wireless sensor networks for intelligent transportation applications: A survey. Industrial Wireless Sensor Networks: Applications, Protocols, and Standards, 47–78. https://doi.org/10.1201/b14072
  • Martin, K. M., & Paterson, M. B. (2009). Ultra-lightweight key predistribution in wireless sensor networks for monitoring linear infrastructure. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5746 LNCS(May 2014), 143–152. https://doi.org/10.1007/978-3-642-03944-7_11
  • Nordic Semiconductor. (n.d.). Nordic Semiconductor. Retrieved October 28, 2021, from https://www.nordicsemi.com/-/media/Publications/WQ-Product-guide/Wireless-Q---Q1---Product-Guide.pdf?la=en&hash=55195302B5331ECA0F7D841B58D7F97DCC945F26
  • Riverbed Modeler. (n.d.). Riverbed Modeler. Retrieved April 9, 2021, from https://www.riverbed.com/gb/products/steelcentral/steelcentral-riverbed-modeler.html
  • Saeed, H., Ali, S., Rashid, S., Qaisar, S., & Felemban, E. (2014). Reliable monitoring of oil and gas pipelines using wireless sensor network (WSN) - REMONG. Proceedings of the 9th International Conference on System of Systems Engineering: The Socio-Technical Perspective, SoSE 2014, 230–235. https://doi.org/10.1109/SYSOSE.2014.6892493
  • Sun, T., Yan, X., & Yan, Y. (2013). A chain-type wireless sensor network in greenhouse agriculture. Journal of Computers (Finland), 8(9), 2366–2373. https://doi.org/10.4304/jcp.8.9.2366-2373
  • Sun, Y., Du, S., Gurewitz, O., & Johnson, D. B. (2008). DW-MAC: a low latency, energy efficient demand-wakeup MAC protocol for wireless sensor networks. Proceedings of the 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing, 53–62. https://doi.org/10.1145/1374618.1374627
  • Varshney, S., Kumar, C., & Swaroop, A. (2015). Linear sensor networks: Applications, issues and major research trends. International Conference on Computing, Communication and Automation, ICCCA 2015, 446–451. https://doi.org/10.1109/CCAA.2015.7148418