Seramik Sağlık Gereci Atıklarının Geopolimer Harç Üretiminde Kullanılabilirliğinin Araştırılması

Bu çalışmada, seramik sağlık gereci (vitrifiye) üretimi esnasında ortaya çıkan hatalı/ıskarta ürünlerin öğütülmesi ile elde edilen atık tozlar alkali ile aktive edilerek geopolimer harçlar üretilmiştir. Üretilen harçlara farklı sıvı/bağlayıcı oranı ve aktivatör molaritesinin etkisi araştırılmıştır. Bu amaçla sıvı bağlayıcı 0,45 ve 0,50 oranlarında 10, 12, 14 ve 16 M NaOH çözeltilerinde karışımlar hazırlanmıştır. Üretilen harç karışımlarına 80°C’de 24 saat ısıl kür ve 28 güne kadar havada kür uygulanmıştır. Numunelere işlenebilirlik, birim ağırlık, eğilme ve basınç dayanımı, su emme ve boşluk oranı deneyleri uygulanmıştır. Numunelerin sıvı/bağlayıcı oranı 0,50 iken molaritenin artması mekanik özelliklere olumlu etkisi olmamakta ancak işlenebilirliği iyileştirmektedir. 0,45 sıvı/bağlayıcı oranında ise molaritenin artışı dayanımda önemli gelişme göstererek 16 M NaOH konsantrasyonunda yaklaşık 34 MPa basınç dayanımı elde edilmiştir. Ancak artan dayanım, çevresel ve ekonomik koşullar açısından geopolimer harç üretimi için uygun molaritenin sıvı/bağlayıcı oranı 0,45’de 12 M NaOH olduğu belirlenmiştir.

Investigation of Usability of Ceramic Sanitaryware Wastes in Geopolymer Mortar Production

In this study, geopolymer mortars were produced with alkali activated the waste powders obtained by grinding of the defective / discarded products generated during the production of vitrified (ceramic sanitaryware) products. The effect of different liquid / binder ratio and activator molarity was investigated on the produced mortars. To achieve this goal, geopolymer mortars were prepared with liquid:binder ratios of 0.45, 0.50 and in four different molarities as 10, 12, 14 and 16 M NaOH. The produced mixtures were cured in oven at 80℃ for 24 h then in air for a period 28 days. The workability, unit weight, flexural and compressive strength, water absorption and volume of permeable voids ratio tests were performed on mortar samples. While the liquid:binder ratio of the samples is 0.50, the increase in molarity was not have a positive effect on mechanical properties, but improved the workability. When the liquid:binder ratio is 0.45, the increase in molarity showed a significant improvement in the strength and approximately 34 MPa compressive strength was obtained at 16 M NaOH concentration. However, in terms of improved strength, environmental and economic conditions, it has been determined that the appropriate molarity for geopolymer mortar production is 12 M at 0.45 in liquid:binder ratio.

___

  • Acıkbas G., Gocmez H. (2017) Polyester Matrisli Kompozit Özeliklerine Vitrifiye Seramik Sağlık Gereci Atık Miktarının Etkisi. Akademik Platform, 5 (3), 137-145.
  • Aguilar, R.A., Díaz, O.B., García, J.I.E. (2010) Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates, Constr. Build. Mater. 24 1166–1175. doi:10.1016/j.conbuildmat.2009.12.024
  • Al-Majidi, M.H., Lampropoulos, A., Cundy,A., Meikle, S. (2016) Development of geopolymer mortar under ambient temperature for in situ applications, Constr. Build. Mater. 120 198–211. doi:10.1016/j.conbuildmat.2016.05.085
  • Amin, S.K., El-Sherbiny, S.A., El-Magd, A.A.M.A., Belal, A., Abadir, M.F. (2017) Fabrication of geopolymer bricks using ceramic dust waste, Constr. Build. Mater. 157 610–620, doi:10.1016/j.conbuildmat.2017.09.052.
  • Atabey, İ. İ., Karahan, O., Bilim, C., & Atiş, C. D. (2020). The influence of activator type and quantity on the transport properties of class F fly ash geopolymer. Construction and Building Materials, 264, 120268, https://doi.org/10.1016/j.conbuildmat.2020.120268
  • Atiş, C. D., Görür, E. B., Karahan, O., Bilim, C., İlkentapar, S., & Luga, E. (2015). Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Construction and building materials, 96, 673-678, https://doi.org/10.1016/j.conbuildmat.2015.08.089
  • Bayer Öztürk, Z., Yılmaz, Y.C., Bozkurt, Y., Atabey, İ.İ., Vitrifiye ürün atıklarından geopolimer yapı malzemesi üretimi, The Internatinonal Conference on Materials Science, Mechanical and Automotive Engineerings and Technology in Cappadocia/TURKEY (IMSMATEC’19), 1178-1181, June 21-23 2019.
  • Cosa J., Soriano L., Borachero M.V., Reig L., Paya J., Monzo J.M. (2018) Influence of addition of fluid catalytic cracking residue (FCC) and the SiO2 concentration in alkali-activated ceramic sanitary-ware (CSW) binders. Minerals, 8, 123. doi:10.3390/min8040123
  • Çelikten, S., Işıkdağ, B. (2020). Strength development of ground perlite-based geopolymer mortars. Advances in concrete construction, 9(3), 227-234, https://doi.org/10.12989/acc.2020.9.3.227
  • Davidovits, J. (1991) Geopolymers: inorganic polymeric new materials, J. Therm. Anal. Calorim. 37 1633–1656 (www.geopolymer.org)
  • Deb P.S., Nath P., Sarker P.K. (2014) The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer conctrete cured at ambient temperature. Materials and Design, 62, 32-39. doi:10.1016/j.matdes.2014.05.001
  • Görhan, G., Kürklü, G. (2014). The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Composites part b: engineering, 58, 371-377, https://doi.org/10.1016/j.compositesb.2013.10.082
  • Huseien, G.F., Mirza, J., Ismail, M., Ghoshal, S., Ariffin, M.A.M. (2016) Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar, Ain Shams Eng. J. 7 (4) 944–953. https://doi.org/10.1016/j.asej.2016.11.011
  • Huseien, G.F., Mirza, J., Ismail, M., Ghoshal, S., Hussein, A.A. (2017) Geopolymer mortars as sustainable repair material: a comprehensive review, Renew. Sustain. Energy Rev. 80 54–74 doi:10.1016/j.rser.2017.05.076
  • Huseien, G.F., Ismaila, M., Tahirb, M., Mirzac, J., Husseina, A., Khalida, N.H. (2018a) Effect of binder to fine aggregate content on performance of sustainable alkali activated mortars incorporating solid waste materials, Chem. Eng. 63 667–672. doi:10.3303/CET1863112
  • Huseien, G.F., Mirza, J., Ismail, M. (2018b) Effects of high volume ceramic binders on flexural strength of self-compacting geopolymer concrete, Adv. Sci. Lett. 24 4097–4101. doi:10.1166/asl.2018.11549
  • Huseien, G.F. , Sam, A.R.M., Mirza, J. Tahir, M.M., Asaad, M.A., Ismail, M., Shah, K.W. (2018c) Waste ceramic powder incorporated alkali activated mortars exposed to elevated temperatures: performance evaluation, Constr. Build. Mater. 187 307–317. doi:10.1016/j.conbuildmat.2018.07.226
  • Huseien, G.F., Sam, A.R.M. , Shah, K.W., Mirza, J. Tahir, M.M. (2019) Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Constr. Build. Mater, 210, 78-92. doi:10.1016/j.conbuildmat.2019.03.194
  • Huseien, G.F., Sam, A.R.M., Shah, K.W., Mirza J.(2020) Effects of ceramic tile powder waste on properties of self-compacted alkali-activated concrete. Constr. Build. Mater, 236, 117574. doi:10.5772/intechopen.81842
  • Kaya, M., Uysal, M., & Yılmaz, K. (2018). Jeopolimer harçlarda dayanım, kür sıcaklığı ve boşluk oranı ilişkisinin varyans analizi ile incelenmesi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 248-256. doi: 10.16984/saufenbilder.300934
  • Keppert, M., Vejmelková, E., Bezdicka, P., Dolezelová, M., Cáchová, M., Scheinherrová, L., Pokorny, J., Vyšvar il, M., Rovnaníková, P., Cerny, R. (2018) Red-clay ceramic powders as geopolymer precursors: Consideration of amorphous portion and CaO content, Appl. Clay Sci. 161 82–89. doi:10.1016/j.clay.2018.04.019
  • Kulkarni S. (2018), Experimental study on red mud, fly ash, GGBFS based geopolymer concrete, International journal of engineering research technology, 7(12) 107-111. (ISSN: 2278-0181)
  • Kunduracı N., Tarhan B., Sarısakal C. (2019) Seramik sağlık gereçleri üretiminde piroplastik deformasyon azaltılmasına bağlı olarak geliştirilen kompozisyonların üretim maliyeti açısından değerlendirilmesi, Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 11(2), 474-480.
  • Medina C., Juan A., Frias M., Sanchez de Rojas M.I., Moran J.M., Guerra M.I. (2011) Characterization of concrete made with recycled aggregate from ceramic sanitary ware. Materiales de Construction, 61, 304, 533-546. doi:10.3989/mc.2011.59710
  • Mehta, A., Siddique, R., Singh, B. P., Aggoun, S., Łagód, G., Barnat-Hunek, D. (2017). Influence of various parameters on strength and absorption properties of fly ash based geopolymer concrete designed by Taguchi method. Construction and Building Materials, 150, 817-824, https://doi.org/10.1016/j.conbuildmat.2017.06.066
  • Mucsi G., Szabo R., Racz A., Kristaly F., Kumar S., (2019), Combined utilization of red mud and mechanically activated fly ash in geopolymers, the Mining Geology- Petroleum Engineering Bulletin, 27-36.
  • Rashad A.M., Essa G.M.F.(2020) Effect of ceramic waste powder on alkali-activated slag pastes cured in hot weather after exposure to elevated temperature. Cement and Concrete Composites, 111, 103617. doi:10.1016/j.cemconcomp.2020.103617
  • Rattanasak, U., Chindaprasirt, P. (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 22(12), 1073-1078. https://doi.org/10.1016/j.mineng.2009.03.022
  • Reig L., Tashima M.M., Soriano L., Borrachero M.V., Monzo J.M., Paya J.J. (2013). Alkaline activation of ceramic waste materials. Waste and Biomass Valorization, 4, 729-736. doi:10.1007/S12649-013-9197-z
  • Reig L., Soriano L., Borrachero M.V., Monzo,J., Paya. J.(2014) Influence of the activator concentration and calcium hydroxide addition on the properties of alkali-activated porcelain stoneware. Constr. Build. Mater, 68, 214-222. doi:10.1016/j.conbuildmat.2014.04.023
  • Reig L., Borrachero M.V., Monzo J.M., Savastono J.R.H., Tashima M.M., Paya J.J. (2015) Use of ceramic sanitaryware as alternative for the development of new sustainable binders. Key Engineering Materials, 668, 172-180. doi:10.4028/www.scientific.net/KEM.668.172
  • Reig L., Soriano L., Tashima M.M., Borachero M.V., Monzo J., Paya J. (2018) Influence of calcium additions on the compressive strength and microstructure of alkali-activated ceramic sanitary-ware. Journal of American Ceramic Society, 101, 3094-3104. doi:10.1111/jace.15436
  • Robayo-Salazar, R.A., de Gutiérrez, R.M. (2018) Natural volcanic pozzolans as an available raw material for alkali-activated materials in the foreseeable future: a review, Constr. Build. Mater. 189 109–118. doi:10.1016/j.conbuildmat.2018.08.174
  • Sathonsaowaphak A., Chindaprasirt P., Pimraksa K., Workability and strength of lignite bottom ash geopolymer mortar, J. Hazard. Mater. 168 (2009) 44–50, https://doi.org/10.1016/j.jhazmat.2009.01.120
  • Shoaei, P., Musaeei, H. R., Mirlohi, F., Ameri, F., & Bahrami, N. (2019). Waste ceramic powder-based geopolymer mortars: effect of curing temperature and alkaline solution-to-binder ratio. Construction and Building Materials, 227, 116686, https://doi.org/10.1016/j.conbuildmat.2019.116686
  • Torres-Carrasco M, Puertas F (2015) Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J Clean Prod 90:397–408. doi:10.1016/j.jclepro.2014.11.074
  • TS EN 196-1, Çimento Deney Metodları – Bölüm 1: Dayanım Tayini, Türk Standartları Enstitüsü, 2009
  • TS EN 1008, Beton-Karma suyu-Numune alma, deneyler ve beton endüstrisindeki işlemlerden geri kazanılan su dahil, suyun, beton karma suyu olarak uygunluğunun tayini kuralları, Türk Standartları Enstitüsü, Ankara, 2003.
  • TS EN 1015-3/A1, Kagir harcı- Deney metotları- Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile), Türk Standartları Enstitüsü, Ankara, 2006.
  • TS EN 1015-11/A1, Kâgir Harcı-Deney Metotları-Bölüm 11: Sertleşmiş Harcın Basınç ve Eğilme Dayanımının Tayini, Türk Standartları Enstitüsü, Ankara, 2013.
  • TS EN 1097-6, Agregaların mekanik ve fiziksel özellikleri için deneyler - Bölüm 6: Tane yoğunluğunun ve su emme oranının tayini, Türk Standartları Enstitüsü, Ankara, 2013.