H2SO4 İle Aktive Edilen Keşan Yöresi Bentonitinin Di Azo Boyar Madde Bazik Sarı 28 Denge Adsorpsiyonu Karakteristiklerinin İncelenmesi

Bu çalışmada Keşan yöresi asit aktive Ca-Bentoniti adsorbant olarak kullanılmıştır. Tekstil, kozmetik, gıda, kâğıt, halı ve plastik gibi endüstri alanlarında geniş çapta kullanımı olan boyar maddelerden di azo kromorf yapısına sahip Bazik Sarı 28’in (BY28) adsorpsiyon karakteristiği incelenmiştir. Adsorpsiyon üzerinde doğrudan etkili pH, adsorbant miktarı, denge zamanı ve başlangıç konsantrasyonu gibi koşullar BY28 adsorpsiyonu için optimize edilmiştir. Denge adsorpsiyon koşulları olarak pH= 6,  0,05 g adsorbant miktarı ve denge zamanı olarak  40 dakika elde edilmiştir. Denge adsorpsiyon koşullarında elde edilen deneysel sonuçlar lineerleştirilmiş Langmuir modeli (R2=0,9987), Freundlich modeli (R2=0,8887) ve Dubinin-Radushkevich (D-R) (R2=0,5594) karşılaştırılarak yorumlanmıştır. Keşan yöresine ait asit aktive Ca-bentonitin tek tabaka adsorpsiyon kapasitesi 116,3 mg/g olarak elde edilmiştir. 25 °C denemeler için Gibbs serbest enerjisi (ΔGo) hesaplanmış ve BY28’in asit aktive bentonit üzerine adsorpsiyon mekanizmasının istemli bir reaksiyon olduğu sonucuna varılmıştır.

Investigation of Equilibrium Adsorption Characteristics of Di Azo Dyes Basic Yellow 28 of H2SO4 Activated Kesan Region Bentonite

In this study, acid activated Ca-Bentonite of Keşan region was used as adsorbent. Adsorption characteristics of Basic Yellow 28 (BY28) which has di azo chromorph structure, which is widely used in industry such as textile, cosmetics, food, paper, carpet, and plastic were investigated in batch system. Conditions such as pH, adsorbent amount, equilibrium time, and initial concentration which are directly effective on adsorption were optimized for BY28 adsorption. pH = 6, 0.05 g adsorbent amount and 40 minutes of equilibrium time were obtained as equilibrium adsorption conditions. Experimental results obtained under equilibrium adsorption conditions were interpreted by comparing linearized Langmuir model (R2 = 0.9987), Freundlich model (R2 = 0.8887), and Dubinin-Radushkevich (D-R) (R2 = 0.5594). The single layer adsorption capacity of acid activated Ca-bentonite of Keşan region was obtained as 116.3 mg / g. Gibbs free energy (ΔGo) was calculated for experiments at 25 ° C and it was concluded that the adsorption mechanism of BY28 on acid activated bentonite is a voluntary reaction.

___

  • Amin, M. T., Alazba, A. A., & Shafiq, M. (2015). Adsorptive Removal of Reactive Black 5 from Wastewater Using Bentonite Clay: Isotherms, Kinetics and Thermodynamics, Sustainability, 7, 15302-15318.
  • Bilgiç, Ö. (2013). Akrilik Asit Fonksiyonel Grupları İçeren Çapraz Bağlı Kopolimer Kullanarak Sulu Çözeltilerden Sr(II) Uzaklaştırılması. Yüksek Lisans Tezi. İstanbul Üniversitesi, İstanbul.
  • Boudechiche, N., Fares, M., Ouyahia, S., Yazid, H., Trari M., & Sadaoui, Z. (2019). Comparative Study on Removal of Two Basic Dyes in Aqueous Medium by Adsorption Using Activated Carbon from Ziziphus Lotus Stones, Microchemical Journal, 146, 1010–1018.
  • Castro, M., Abad, M., Sumalinog, D., Abarca, R., Paoprasert, P., Luna, M. (2018). Adsorption of Methylene Blue dye and Cu (II) ions on EDTA-modified bentonite: Isotherm, kinetic and thermodynamic studies. Sustainable Environment Research, 28, 197-205. doi:10.1016/j.serj.2018.04.001
  • Dawood, S., & Sen, T.K. (2014). Review on Dye Removal from Its Aqueous Solution into Alternative Cost Effective and Non-Conventional Adsorbents, Journal of Chemical and Process Engineering, 1: 104, 1-11.
  • Giles C. H., MacEwan, T. H., Nakhwa S. N., & Smith D. (1960). Studies in Adsorption. Part XI. A System of Classification of Solution Adsorption Isotherms, and Its Use in Diagnosis of Adsorption Mechanisms and In Measurements of Specific Surface Areas of Solids, 3973–3993.
  • Gönüllü, T. (2004). Endüstriyel İşlemler. Endüstriyel Kirlenme Kontrolü (13-29). İstanbul: Birsen Basın Yayın.
  • Gupta, V. K., & Suhas. (2009). Application of low-cost adsorbents for dye removal a review. Journal of Environmental Management, 90, 2313–2342. doi:10.1016/j.jenvman.2008.11.017
  • Clark, J., Macquarrie, D., Gronnow, M., & Budarin V. (2013). Green Chemistry Principles. K. Boodhoo, (Ed.), Process Intensification for Green Chemistry (33-55). İngiltere: John Wiley & Sons, Ltd.
  • Huang, Z., Li, Y., Chen, W., Shi, J., Zhang, N., Wang, X., Li, Z., Gao, L., & Zhang, Y. (2017). Modified bentonite adsorption of organic pollutants of dye wastewater. Materials Chemistry and Physics, 202, 266-276. doi:10.1016/j.matchemphys.2017.09.028
  • Ismadji, S., Soetaredjo, E., F., & Ayucitra, A. (2015). Clay Materials for Environmental Remediation, Green Chemistry for Sustainability (113-118). Springer Cham Heidelberg New York Dordrecht London.
  • Jadhav, J., & Phugare, S. (2012). Textile Dyes: General Informatıon And Environmental Aspects. A. Nemr, (Ed.), Non-Conventional Textile Waste Water Treatment (1-29). Amerika: Nova Bilim Yayınları.
  • Javed, S., Zahir, A., Khan, A., Afzal, S. & Mansha, M. (2018). Adsorption Of Mordant Red 73 Dye On Acid Activated Bentonite: Kinetics And Thermodynamic Studies. Journal of Molecular Liquids, 254, 398–405. doi:10.1016/j.molliq.2018.01.100
  • Koçkaya, G. (2016). Anilin Mavisinin Atıksulardan Uzaklaştırılmasında Yeni Bir Adsorbent Kullanımı. Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Kooli,F., Liu, Y., Abboudi M., Hassani, H.O., Rakass, S., Ibrahim, S.M., & Al Wadaani, F. (2019). Waste Bricks Applied as Removal Agent of Basic Blue 41 from Aqueous Solutions: Base Treatment and Their Regeneration Efficiency, Applied Sciences, 9, 1237. doi:10.3390/app9061237
  • Olgun, A., & Atar, N. (2009). Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste. Journal of Hazardous Materials, 161, 148–156. doi:10.1016/j.jhazmat.2008.03.064
  • Pawar, R., Gupta, P., Lalhmunsiama, Bajaj, H., & Lee, S. (2016). Al-İntercalated Acid Activated Bentonite Beads For The Removal Of Aqueous Phosphate. Science of the Total Environment, 572, 1222–1230. doi:10.1016/j.scitotenv.2016.08.040
  • Turabik, M. (2008). Adsorption Of Basic Dyes From Single And Binary Component Systems Onto Bentonite: Simultaneous Analysis Of Basic Red 46 And Basic Yellow 28 By First Order Derivative Spectrophotometric Analysis Method. Journal of Hazardous Material, 158, 52-64. doi:10.1016/j.jhazmat.2008.01.033
  • Worch, E. (2012). Adsorption Technology in Water Treatment; Fundamentals, Proc. and Mod., Dresden-Germany.
  • Yener, J., Kopaç, T., Doğu, G., & Doğu, T. (2006). Adsorption of Basic Yellow 28 from aqueous solutions with clinoptilolite and amberlite. Journal of Colloid and Interface Science, 294, 255-264. doi:10.1016/j.jcis.2005.07.040
  • Zermane, F,. Bouras, O., Baudu, M., & Basly, J. (2010). Cooperative coadsorption of 4-nitrophenol and basic yellow 28 dye onto an iron organo–inorgano pillared montmorillonite clay. Journal of Colloid and Interface Science, 350, 315–319. doi:10.1016/j.jcis.2010.06