Çok Girişli Çok Çıkışlı Dikgen Frekans Bölmeli Çoğullamalı Sistemlerde Kanal Kodlaması Performans Analizi

Dikgen frekans bölmeli çoğullama (OFDM) ve frekans bölmeli çoğullama (FDM) gibi çok taşıyıcılı modülasyon tekniklerinin, hızlı değişen çok yollu iletişim kanallarında, semboller arası girişimlere (ISI) ve gürültülere karşı tek taşıyıcılı iletişim sistemlerine göre çok daha dayanıklı olduğu yapılan olduğu son yıllarda ortaya konmuştur. Bu nedenle yeni nesil data hızı yüksek, geniş bandlı kablosuz iletişim sistemleri için, çok taşıyıcılı modülasyon teknikleri aday olarak düşünülmekte ve standart olarak yerleşmektedir. Örnek olarak Avrupa sayısal radyo yayın sistemi (DAB), sayısal televizyon sistemi (DVB), kablosuz yerel bilgisayar ağları standardı (IEEE 802.11a) ve kablosuz metropolitan bilgisayar ağları (IEEE 802.16a) verilebilir. Bu çalışmada, çok girişli çok çıkışlı dikgen frekans bölmeli çoğullamalı (MIMO-OFDM) sistemlerde, hata kontrol kodları olarak bilinen düşük yoğunluklu eşlik kontrol (LDPC) kodları, uzay-zaman blok kodları (STBC) ve konvolüsyon kodları ele alınmıştır. Her üç kod için de ikili faz kaydırmalı anahtarlama (BPSK) sistemlerinde, toplamsal beyaz Gauss gürültülü (AWGN) kanal için performans analizleri yapılmış ve sonuçları karşılaştırılmıştır. Düşük yoğunluklu eşlik kontrol kodları, uzay-zaman blok kodları ve konvolüsyon kodlarının ikili faz kaydırmalı anahtarlama sistemleri üzerindeki bit hata oranı (BER) karşılaştırması matlab programıyla simüle edilerek verilmiştir. Simülasyon sonuçlarında, uzay-zaman blok kodlarının, düşük yoğunluklu eşlik kontrol kodları ve konvolüsyon kodlarına göre daha üstün bir performans sağladığı gözlemlenmiştir.

Performance Analysis Of Channel Coding In Multi Input Multi Output Orthogonal Frequency Division Multiplexing

Multicarrier modulation techniques like orthogonal frequency division multiplexing (OFDM) and frequency division multiplexing (FDM) have recently been introduced as robust techniques against intersymbol interference (ISI) and noise, compared to single carrier communication systems over fast fading multipath communication channels. Therefore, multicarrier modulation techniques have been considered as a candidate for new generation, high data rate broadband wireless communication systems and have been adopted as the related standards. Several examples are the European digital audio broadcasting (DAB) and digital video broadcasting (DVB), the IEEE standands for wireless local area networks (WLAN), 802.11a, and wireless metropolitan area networks (WMAN), 802.16a. In this study, low density parity-check (LDPC) codes, space-time block codes (STBC) and convolutional codes, which are known as error control codes, are discussed in multi-input multiple-output orthogonal frequency division multiplexed (MIMO-OFDM) systems. First, the structure of space-time block codes is explained. Then space-time block codes are compared with low density parity check codes and convolutional codes. Specifically, performance results for additive white Gaussian noise (AWGN) channel in binary phase shift keyying (BPSK) systems of these three codes have been compared. Bit error rates (BER) on binary phase shift keyying systems of space-time block codes, low density parity check codes and convolutional codes are simulated using matlab. Simulation results show that space-time block codes provide better performance than the other two error control codes.

___

  • S. M. Alamouti, 1998, A Simple Transmit Diversity Technique for Wireless Communications, IEEE Journal on Select Areas In Communications, Vol. 16, No. 8., 1451- 1458.
  • E. Eryılmaz, Uzay-Zaman Blok Kodlarında Verici Anten Seçimi. Bitirme Çalışması, 2004.
  • C. E. Shannon, A Mathematical Theory of Communication, Bell Syst. Tech. J., vol. 27, pp. 379-423, 623-656, 1948.
  • A. F. Molisch, MIMO Systems with Antenna Selection – an Overview, Mitsubishi Research Laboratory, 2003.
  • R.W. Chang, Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission, Bell System Technical Journal, vol. 45, pp 1775-1796, December 1966.
  • S.B. Weinstein, P.M. Ebert, Data transmission by frequency-division multiplexing using the discrete Fourier transform, IEEE Transactions on Communications, vol. 19, no. 5, pp. 628-634, October 1971.
  • Digital Broadcasting Systems for Television, Sound and Data Services, European Telecommunications Standart, prETS 300 744, April 1996.
  • Onizawa, T., et all, A Fast Synchronization Scheme of OFDM Signals for High Rate Wireless LAN, IEICE Transactions on Communications, E82-B(2), 455-463, 1999.
  • Sampath, H., Taiwar, S., “A Fourth-Generation MIMO-OFDM Broadband Wireless Systems: Design, Performance, and Field Trial Results”, IEEE Communications Magazine, pp.143-149, September, 2002.
  • Gordon, L.S, John, R. B., Steve, W. M., Ye, L., Marry, A. I., “Broadband MIMO-OFDM Wireless Communications”, Proceedings of the IEEE, vol. 92, No. 2, pp. 271-294, February 2004.
  • Barhumi, I., Geert, L., Moonen, M., “Optimal training Design for MIMO OFDM Systems in Mobile Wireless Channels”, IEEE Transc. On Signal Processing, vol. 51, No. 6, pp. 1615- 1624, June 2003.
  • Li, J., Liao, G., Wu, Y., “MIMO-OFDM Channel Estimation in Presence of Carrier Frequency Ofset”, Proc. of the IEEE 6th CAS Sym. on Emerging Technologies Mobile and Wireless Comm. pp 685-688, Shangai China, June 2004.
  • Minn, H., Al-Dhair, N., “Training Signal Design for MIMO OFDM Channel Estimation in Presence of Frequency Ofset”, Proc. of the IEEE Wireless Communications and Networking Conference (WCNC 2005), pp. 1-6, April 2005.
  • C. Yıldız, Düşük Yoğunluklu Eşlik Kontrol Kodları Kullanan BPSK Sistemlerinin AWGN Kanal İçin Performans Analizi, Yüksek Lisans Tezi, Kırıkkale Üniversitesi, Kırıkkale, 2006.
  • T. J. Richardson, M. A Shokrollahi, and R. L Urbanke, Design of Capacity Approaching Irregular Low-Density Parity-Check Codes, IEEE Trans. On Information Theory, Vol. 47, pp. 619–637, 2001.
  • M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, Improved Low-Density Parity-Check Codes Using Irregular Graphs, IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 585-598, 2001.
  • Sarah J. Johnson, Steven R. Weller, Low-Density Parity-Check Codes: Design and Decoding, Technical Report EE02041, 2002.
  • V. Tarokh, N. Seshadri, A.R. Calderbank, (1998), “Space-time codes for high data rate wireless communication: Performance ciriterion and code construction” IEEE Transactions on Information Theory, 44 (2), 744-765.
  • C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke, Finitelength Analysis of Low-Density Parity-Check Codes on The Binary Erasure Channel, IEEE Trans. Inform. Theory, vol. 48, no. 6, pp. 1570-1579, 2002.
  • S. Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Urbanke, on the Design of Low-Density Parity-Check Codes Within 0.0045 dB of the Shannon Limit, IEEE Commun. Letters, vol. 5, no. 2, pp. 58-60, 2001.
  • Naguib, A., Seshardi, N. ve Calderbank, A. R., 2000, Space-Time Coding and Signal Processing for High Data Rate Wireless Communications, IEEE Signal Processing Magazine, 76- 91.
  • Tarokh, V., Seshadri, N. ve Calderbank, A., 1997, Space-Time Codes For High Data Rate Wireless Communications: Code Construction, IEEE Vehicular Technology Conf., 637- 641.
  • Liew, T. H. ve Hanzo L., 2002, Space-Time Codes and Concatenated Channel Codes for Wireless Communications, Proceedings Of The IEEE, Vol. 90, No. 2, 187- 219.
  • A. J. Viterbi and J. K. Omurga, Princibles of Digital Communication and Coding, McGraw-Hill, New York, 1979.
  • G. D. Forney, Jr., The Viterbi Algorithm, Proc. IEEE, 61, pp. 268-278, 1973.