Ayrık Tekil Konvolusyon Yöntemi ile İki Boyutlu Isı Probleminin MATLAB Ortamında Çözümü

Bu çalısma ayrık tekil konvolusyon yöntemini ve iki boyutlu ısı yayılma denklemine uygulanmasını özetlemektedir. Sayısal hesaplamalarda Dirichlet tipi sınır sartları kullanılmıstır. Bir MATLAB® kodu yardımıyla sayısal hesaplamalar ve grafik sunumlar olusturulmustur. Karsılastırma amaçlı olarak denge durumundaki plak durumu için degiskenlerin ayrıstırılması yöntemiyle de çözüm yapılmıstır.

Ayrık Tekil Konvolusyon Yöntemi ile İki Boyutlu Isı Probleminin MATLAB Ortamında Çözümü

This study summarizes the discrete singular convolution (DSC) method and its implementation to two dimensional transient heat conduction problem. Dirichlet type boundary conditions are used in the calculations. A MATLAB® code is prepared for the numerical calculations and graphical representations. Steady state condition is solved by the method of separation of variables in order to compare the results.

___

  • [1] S. A. Orszag, Comparison of pseudospectral and spectral approximations, Studies in Applied Mathematics, Vol 51, pp. 253–259, 1972. [2] D. Gottlieb, S. A. Orszag, “Numerical analysis of spectral methods: theory and applications”, SIAM, 1987. [3] R. Vichnevetsky, J. B. Bowles, “Fourier analysis of numerical approximations of hyperbolic equations”, SIAM, Philadelphia, 1982. [4] C. Shu, “Differential quadrature and its applications in engineering”, Springer Verlag, 2000. [5] CW, Bert, M. Malik, “Differential quadrature in computational mechanics: a review”, Appl. Mech. Rev., Vol 49, pp. 1–27, 1996. [6] R.E. Bellman, J. Casti “Differential quadrature and long-term integration”, J. Math. Anal. Appl., Vol. 34, pp. 235–238, 1971. [7] O.C. Zienkiewicz, “The finite element method in engineering science”, McGraw-Hill, New York, 1977. [8] J.N. Reddy, “An introduction to the finite element method”, McGraw- Hill, New York, 2005. [9] G.E. Forsythe, W.R. Wasow, “Finite difference methods for partial differential equations”, Wiley, New York, 1960. [10] R.J., LeVeque, “Finite Volume Methods for Hyperbolic Problems”, Cambridge Texts in Applied Mathematics (No. 31), 2002. [11] D. C. Wan, B. S. V. Patnaik, and G. W. Wei, “A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution”, Numerical Heat Transfer, Part B, Vol 40, pp. 199-228, 2001. [12] G. W. Wei, "Discrete singular convolution for the solution of the Fokker–Planck equation", J. Chem. Phys. Vol 110, pp. 8930, 1999. [13] G. W. Wei, “Vibration analysis by discrete singular convolution”, Journal of Sound and Vibration, Vol 244 (3), pp. 535-553, 2001. [14] Y. B. Zhao, G.W. Wei, Y. Xiang, “Discrete singular convolution for the prediction of high frequency vibration of plates”, Int. J. Solids Struct., Vol 39, pp.65-88 (2002). [15] G. W. Wei, Y. B. Zhao, Y. Xiang, “A novel approach for the analysis of high-frequency vibrations”, Journal of Sound and Vibration, Vol 257(2), pp. 207-246, 2002. [16] A. Seçgin, A. Saide Sarıgül, "Free vibration analysis of symmetrically laminated thin composite plates by using discrete singular convolution (DSC) approach: Algorithm and verification", Journal of Sound and Vibration, Vol 315, pp. 197–211, 2008. [17] Ö. Civalek, “Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method”, Finite Elements in Analysis and Design, Vol 44, pp. 725–731, 2008. [18] Ö. Civalek, "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Meth. Engng, Vol 24, pp. 169–181, 2008. [19] Ö. Civalek, “A four-node discrete singular convolution for geometric transformation and its application to numerical solution of vibration problem of arbitrary straight-sided quadrilateral plates”, Applied Mathematical Modelling, Vol 33, pp. 300–314, 2009. [20] A. Seçgin, A. Saide Sarıgül, "A novel scheme for the discrete prediction of high-frequency vibration response: Discrete singular convolution– mode superposition approach", Journal of Sound and Vibration, doi:10.1016/j.jsv.2008.08.031 [21] S. Y. Yang, Y. C. Zhou, G. W. Wei, “Comparison of the discrete singular convolution algorithm and the Fourier pseudospectral method for solving partial differential equations”, Computer Physics Communications, Vol 143, pp. 113–135, 2002. [22] Z. Shao, Z. Shen, "A Generalized Higher Order Finite-Difference Time- Domain Method and Its Application in Guided-Wave Problems", IEEE Transactions on Microwave Theory and Techniques, Vol 51 (3), pp. 856–861, 2003. [23] Z. Shao, G. W. Wei, S. Zhao, "DSC time-domain solution of Maxwell's equations", Journal of Computational Physics, Vol 189, pp. 427–453, 2003. [24] D.A. Popov, D.V. Sushko, “Computation of singular convolutions”, Applied Problems of Radon Transform (Editör: Simon Gindikin) American Mathematical Society Translations, Series 2, Vol 162, pp. 43- 128, 1994. [25] C.E. Shannon, “Communication In The Presence Of Noise”, Proceedings of the IEEE, Vol 86 (2), pp. 447 – 457, 1998. [26] A.J. Jerri, “The Shannon sampling theorem—Its various extensions and applications: A tutorial review”, Proceedings of the IEEE, Vol 65 (11), pp.1565 – 1596, 1977.