Kâğıt Tabanlı Mikro Akışkan Kolorimetrik Sensör Sistemleri

Kimyasal sensör sistemleri, bilim ve teknolojideki ilerlemenin güzel bir örneği olarak karşımıza çıkan multidisipliner bir alandır. Kimyasal sensörler, algılayıcı tabaka, iletim sistemi ve sinyal okuma sistemlerinin entegre halde bulunduğu analitik cihazlardır. Hassasiyeti ve seçiciliği yüksek, düşük maliyetli, kullanımı kolay, taşınabilirlik gibi kriterlere sahip olmak zorundadır. Kriterleri sağlayabilmek için temel bilim ve mühendislikten faydalanılmaktadır. Multidisipliner çalışmaların ürünü ve sensör sistemlerinde büyük avantaj sağlayan önemli yapılardan biri de mikro akışkan sistemlerdir. Mikro akışkan sistemler, polidimetilsiloksan (PDMS), cam, kâğıt gibi farklı malzeme türleriyle 100 nm-100 µm arasında değişebilen kanal yapıların üretilebilme teknolojisidir. Her malzemenin kendine has avantaj ve dezavantajı bulunmakla beraber Whitesides Grubu’nun 2007 yılında Kâğıt Tabanlı Mikro akışkan (µPAD) Sensörlerle yapmış olduğu çığır açıcı çalışmalarla, μPAD kimyasal sensörlerin giyilebilir, klinik, gıda ve çevre gibi farklı alanlarda uygulamalarının her geçen gün arttığı görülmektedir. Bu derleme makalede, kâğıt tabanlı mikro akışkan sistemlerin tarihçesi, kâğıdın desenlendirmesi ve kimyasal sensör uygulamaları aktarılmaktadır. 

Paper Based Microfluidic Colorimetric Sensor Systems

Chemical sensor systems is a multidisciplinary field that stands out as a good example of progress in science and technology. Chemical sensors are analytical devices in which the sensing layer, transmission system and signal reading systems are integrated. It has to have criteria such as high sensitivity and selectivity, low cost, easy to use, portability. Basic science and engineering are used to meet the criteria. One of the important structures that provide great advantages in sensor systems and the product of multidisciplinary studies is microfluidic systems. Microfluidic systems are the technology of producing channel structures ranging from 100 nm to 100 µm with different material types such as polydimethylsiloxane (PDMS), glass, and paper. Although each material has its own advantages and disadvantages, it is seen that the applications of μPAD chemical sensors in different fields such as wearable, clinical, food and environment are increasing day by day with the breakthrough studies carried out by the Whitesides Group with Paper-Based Microfluidic (µPAD) Sensors in 2007. In this review article, the history of paper-based microfluidic systems, patterning of paper and chemical sensor applications are presented.

___

  • Ahmed S ve ark. (2016). Biosensors and Bioelectronics Paper-based chemical and biological sensors: Engineering aspects. Biosensors and Bioelectronics, 77, 249-263.
  • Berlanda ve ark. (2020). Recent Advances in Microfluidic Technology for Bioanalysis and Diagnostics. Analytical Chemistry, 66.
  • Cate ve ark. (2015). Recent Developments in paper-based microfluidic devies. Analytical Chemistry, 87-1, 19-41.
  • Convery ve ark. (2019). 30 Years of Microfluidics. Micro and Nano Engineering, 2, 76-91.
  • Dincer C ve ark. (2019). Disposable Sensors in Diagnostics, Food and Environmental Monitoring. Advanced Materials, 1806739(31,1806739), 1-28.
  • Dixit C.K ve ark. (2016). Fundamentals of Fluididcs. Springer.
  • Dong ve ark. (2010). A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosensors and Bioelectronics, 25, 1999-2002. doi:10.1016/j.bios.2010.01.019
  • Hossain ve ark. (2009). Reagentless bidriectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. International Pest Control, 296-304.
  • Hossain ve ark. (2011). B-Galactosidase-based colorimetric paper sensors for determination of heavy metals. Analytical Chemistry, 8772-8778.
  • Hugh Fan Z. (2013). Chemical Sensors and Microfluidics. Journal of Bioensors& Bioelectronics, 1-2.
  • Jingyu ve ark. (2019). Microfluidic Chip-Based Wearable Colorimetric Sensor for Simple and Facile Detection of Sweat Glucose. Analytical Chemistry, 91, 14803-14807. doi:10.1021/acs.analchem.9b03110
  • KILIÇ, S. (2006). Biyolojik Silahlar ve Biyoerörizm. Türk Hij Den Biyol Derg, 1-20.
  • Koczula K ve ark. (2016). Lateral Flow Assays. Essay in Biochemistry, 60, 111-120.
  • Kosack ve ark. (2017). A guide to aid the selection of diagnostic tests. World Health Organisation, 95, 639-645.
  • Li ve ark. (2019). Lateral Flow Assay Ruler for Quantitative and Rapid Point-of-care Testing. Analyst, 140, 3314-3322. doi:10.1039/c9an00374f
  • Liana D ve ark. (2012). Recent Advances in Paper-Based Sensors. SENSORS, 11505-11526.
  • Martinez A ve ark. (2010). Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Analytical Chemistry, 3-10.
  • Martinez ve ark. (2008). Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-time, Off-Site Diagnosis. Analytical Chemistry, 3699-3707.
  • Martinez ve ark. (2008). Three-dimensional microfluidic devies fabricated in layered paper and tape. PNAS, 105(50), 19606-19611.
  • Moerner ve ark. (1999). Illuminating Single Molecules in Condensed Matter. Science, 283, 1670.
  • Noviana E ve ark. (2021). Microfluidic Paper-Based Analytical Devies: From Design to Applications. Chemical Reviews.
  • Pardasani ve ark. (2012). u-PADs for detection of chemical warfare agents. Analyst, 137(23), 5648-5653.
  • Rapid Lateral Flow Test Strips. (2013). Germany: Merck Millipore.
  • Sharma ve ark. (2021). Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. MDPI, 26(478).
  • Wang R ve ark. (2019). Rapid Diagnostic Platform for Colorimetric Differential Detection of Dengue and Chikungunya Viral Infections. Analytical Chemistry, 91, 5415-5423.
  • Xia Y ve ark. (2016). Fabrication techniques for microfluidic paper-based analytical devies and their applications for biological testing. Biosensors and Bioelectronics, 77, 774-789.
  • Xu ve ark. (2021). Wearable Biosensors for Non-Invasive Sweat Diagnostics. MDPI, 11(245).
  • Youming ve ark. (2019). Signal-Enhanced Lateral Flow Immunoassay with Dual Gold Nanoparticle Conjugates for the Detection of Hepatitis B Surface Antigen. ACS Omega, 4, 5083-5087. doi:10.1021/ascomega.8b03593
  • Zhang ve ark. (2013). Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential control technique. Biosensors and Bioelectronics, 41(1), 544-550.
  • Zhang ve ark. (2015). A low-cost and simple paper-based microfluidic device ffor simultaneous multiplex determination of different types of chemical contaminants in food. Biosensors and Bioelectronics, 14-19.