Elektromekanik Yükle Tahrik Edilen Yumuşak Dielektrik Elastomerin Sıcaklık Karakterizasyonu

Dielektrik elastomerler(DE), bir elektrik alanına maruz kalarak büyük deformasyonlar sağlaması, canlı kasına benzemesi ve sensör olarak kullanılabilmesi gibi özelliklere sahip bir polimer çeşididir.Bu çalışmamızda Dielektrik Elastomer Eyleyiciler (DEA)’lardayüksek gerilimde ve farklı frekanslarda meydana gelen sıcaklık değişimlerini araştırılmaktadır.DEA yüzeyinde kare, sinüs, ve üçgen dalga olmak üzere üç farklı elektriksel sinyal uygulanarak malzeme üzerindeki sıcaklık değişimleri test edilmektedir. Sıcaklık değişimleri farklı frekanslara, zamana ve gerilime bağlı olarak termal kamera yardımıyla zamana göre ölçülmektedir. Deneysel çalışmada DEA’lar üzerinde sıcaklıkların oluşması elektriksel sinyaller, gerilim, ortam sıcaklığı ve öngerme gibi etmenlerin etki ettiğini görülmektedir.DEA yüzeyindeki sıcaklık değeri kare dalga formunda yaklaşık 3 Hz de en yüksek değere ulaştığı görülmektedir. Aynı zamanda uygulanan gerilim ile sıcaklık değerleri doğru orantılı olduğu görülmektedir. Yüksek gerilimde sıcaklık değerleri ani yükseldiği için yırtılma gerçekleşmiştir.Bu çalışmanın yeni yumuşak robotlarda, biyomedikal uygulamalarda ve sensörlerde kullanılan DEA’ların yüzey sıcaklıkların dikkat edilmesi açısından önem taşımaktadır.

Temperature Characterization of Electromechanical Load Driven Soft Dielectric Elastomer

Dielectric elastomers (DE) are a type of polymer with features such as being exposed to an electric field, providing great deformations, resembling live muscle and can be used as a sensor. In this study, we investigate the temperature changes occurring in high voltage and different frequencies in Dielectric Elastomer Actuators (DEA). Temperature variations on the material are tested by applying three different signals, namely square, sine, and triangular wave, on the DEA surface. Temperature fluctuations are measured according to different frequencies, time and voltage with the help of thermal cameras. In the experimental study, it is seen that factors such as the formation of temperatures on DEAs, electrical signals, voltage, ambient temperature and prestressing. It is seen that the temperature value on the surface of the DEA reaches the highest value at about 3 Hz in square wave form. At the same time, it is seen that the applied voltage and temperature values are directly proportional. As the temperature values increased suddenly at high voltage, tearing occurred. This study is important in terms of paying attention to the surface temperatures of DEAs used in new soft robots, biomedical applications and sensors.

___

  • Pelrine, R., Kornbluh, R., Joseph, J., Heydt, R., Pei, Q., & Chiba, S. (2000). High-field deformation of elastomeric dielectrics for actuators. Materials Science and Engineering: C, 11(2), 89-100.
  • Brochu, P., & Pei, Q. (2010). Advances in dielectric elastomers for actuators and artificial muscles. Macromolecular rapid communications, 31(1), 10-36.
  • Suo, Z. (2010). Theory of dielectric elastomers. Acta Mechanica Solida Sinica, 23(6), 549-578.
  • O’Halloran, A., O’malley, F., & McHugh, P. (2008). A review on dielectric elastomer actuators, technology, applications, and challenges. Journal of Applied Physics, 104(7), 9.
  • Li, Z., Lau, H. Y., Chen, X., Wang, J., Shen, S., & Sun, P. (2018). Experimental study on the variation of dielectric constant of dielectric elastomer actuator. In 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) (pp. 1-5). IEEE.
  • Bigué, J. P. L., & Plante, J. S. (2011). Experimental study of dielectric elastomer actuator energy conversion efficiency. IEEE/ASME Transactions on Mechatronics, 18(1), 169-177.
  • Sheng, J., Chen, H., Li, B., Wang, Y., & Qiang, J. (2012, April). Effect of temperature on electromechanical instability of dielectric elastomers. In Electroactive Polymer Actuators and Devices (EAPAD) 2012 (Vol. 8340, p. 83402B). International Society for Optics and Photonics.
  • Liu, Y., Liu, L., Leng, J., Yu, K., & Sun, S. (2009). Erratum:“Electromechanical stability of dielectric elastomer”[Appl. Phys. Lett. 94, 211901 (2009)]. Applied Physics Letters, 95(1), 211901.
  • Jean-Mistral, C., Sylvestre, A., Basrour, S., & Chaillout, J. J. (2010). Dielectric properties of polyacrylate thick films used in sensors and actuators. Smart materials and structures, 19(7), 075019.
  • White, E. L., Yuen, M. C., & Kramer, R. K. (2017, October). Distributed sensing in capacitive conductive composites. In 2017 IEEE SENSORS (pp. 1-3). IEEE.
  • Liu, Y., Liu, L., Zhang, Z., & Leng, J. (2009). Dielectric elastomer film actuators: characterization, experiment and analysis. Smart Materials and Structures, 18(9), 095024.
  • Pelrine, R., Kornbluh, R., Pei, Q., & Joseph, J. (2000). High-speed electrically actuated elastomers with strain greater than 100%. Science, 287(5454), 836-839.
  • Pelrine, R., Kornbluh, R. D., Eckerle, J., Jeuck, P., Oh, S., Pei, Q., & Stanford, S. (2001, July). Dielectric elastomers: generator mode fundamentals and applications. In Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices (Vol. 4329, pp. 148-156). International Society for Optics and Photonics.
  • Jean-Mistral, C., Basrour, S., Chaillout, J. J., & Bonvilain, A. (2008). A complete study of electroactive polymers for energy scavenging: modelling and experiments. arXiv preprint arXiv:0802.3046.
  • Tez: Lai, William., Yüksek Lisans Tezi, "Characteristics of dielectric elastomers and fabrication of dielectric elastomer actuators for artificial muscle applications." (2011). Pössinger, Tobias. PhD THESIS Experimental Characterization, Modeling and Simulation of Magneto-Rheological Elastomers. Diss. 2015.