İki Rezin Simanın Farklı Metal Alaşımlara Makaslama Bağlanma Dayanımlarının Karşılaştırılması

Bu çalışmanın amacı rezin içerikli simanların bilgisayar destekli tasarım/ bilgisayar destekli üretim (CAD/CAM) ve lazer sinterleme ile üretilen metal alaşımlara makaslama bağlanma dayanımlarını (SBS) incelemekti. 160 adet metal alaşım disk şeklinde hazırlanan numuneler 4 gruba ayrıldı: Cr-Co (sert metal, HM; yumuşak metal, SM; lazer sinterleme, LS), and titanyum metal (TM). Numunelere 50 μm alüminyum oksit ile kumlama yapılmış ve adeziv rezin siman ile self-etch/self adeziv rezin siman kullanılmak üzere iki alt gruba ayrılmıştır. Makaslama bağlanma dayanımı ölçülmeden önce numunelerin yarısına termal döngü (10000 döngü, 5-55°C) uygulanmıştır. Termal döngü 0 olan grupların içinde en yüksek SBS değeri (18.3 ± 3 MPa) self etch/self adeziv rezin siman ile HM arasında görülmüştür (P < 0.05). Termal döngü 10000’de ise simanların SM ve LS gruplarında anlamlı derecede farklılık vardır (p<0.05). GL grubunda termal döngü açısından anlamlı bir fark olmamasına karşın ME grubunda fark anlamlıdır. Adeziv rezin siman termal döngüye karşı self etch/self adeziv rezin simandan daha dirençli bulunmuştur.

A Comparison of Shear Bond Strength of Two Resin Cements to Different Metal Alloys

The aim of this study was to investigate the shear bond strength (SBS) of resin cement to different metals manufactured by computer aided design and computer aided manufacturing (CAD/CAM) and laser sintering. One hundred and sixty specimens were prepared and divided into four groups of metal alloy discs: Cr-Co (hard metal, HM; soft metal, SM; laser sintering, LS), and titanium metal (TM). Specimens were sandblasted with 50 μm aluminum oxide and divided into two subgroups, each of which received one of the following luting cements: Adhesive resin cement, Self-etch/self-adhesive resin cement. 50% of the specimens were thermal cycled (10000 cycles, 5–55°C) before being tested for shear bond strength. At thermocycle 0, the highest SBS value (18.3 ± 3 MPa) was found with the self-etch/self-adhesive cement of the HM group (P < 0.05). At thermocycle 10000, there was a significant difference between the cements in the SM and LS groups (p<0.05). Whereas there was no significant difference between the GL groups in terms of thermal cycling, there was a significant difference in the ME groups. The adhesive resin cement was found to be more resistant to thermal cycling than self-etch/self-adhesive cement.

___

  • 1. Kocaagaoglu H, Albayrak H, Kilinc HI, Gumus HO. Effect of repeated ceramic firings on the marginal and internal adaptation of metal-ceramic restorations fabricated with different CAD-CAM technologies. J Prosthet Dent 2017; 118 (5): 672-7.
  • 2. Musani S, Musani I, Dugal R, Habbu N, Madanshetty P, Virani D. An in vitro comparative evaluation of micro tensile bond strength of two metal bonding resin cements bonded to cobalt chromium alloy. J Int Oral Health 2013; 5 (5): 73-8.
  • 3. Ates SM, Korkmaz FM, Caglar IS, Duymus ZY, Turgut S, Bagis EA. The effect of ultrafast fiber laser application on the bond strength of resin cement to titanium. Lasers Med Sci 2017; 32 (5): 1121-9.
  • 4. Antanasova M, Kocjan A, Kovac J, Zuzek B, Jevnikar P. Influence of thermo-mechanical cycling on porcelain bonding to cobalt-chromium and titanium dental alloys fabricated by casting, milling, and selective laser melting. J Prosthodont Res 2018; 62 (2): 184-94.
  • 5. Guilherme N, Wadhwani C, Zheng C, Chung KH. Effect of surface treatments on titanium alloy bonding to lithium disilicate glass-ceramics. J Prosthet Dent 2016; 116 (5): 797-802.
  • 6. Parchanska-Kowalik M, Wolowiec-Korecka E, Klimek L. Effect of chemical surface treatment of titanium on its bond with dental ceramics. J Prosthet Dent 2018; 120(3): 470-5.
  • 7. Onoral O, Ulusoy M, Seker E, Etikan I. Influence of repeated firings on marginal, axial, axio-occlusal, and occlusal fit of metal-ceramic restorations fabricated with different techniques. J Prosthet Dent 2018; 120 (3): 415-20.
  • 8. Ucar Y, Ekren O. Effect of layered manufacturing techniques, alloy powders, and layer thickness on mechanical properties of Co-Cr dental alloys. J Prosthet Dent 2018; 120(5): 762-70.
  • 9. Oilo M, Nesse H, Lundberg OJ, Gjerdet NR. Mechanical properties of cobalt-chromium 3-unit fixed dental prostheses fabricated by casting, milling, and additive manufacturing. J Prosthet Dent 2018; 120 (1): 156 e1-156 e7.
  • 10. Svanborg P, Eliasson A, Stenport V. Additively manufactured titanium and cobalt-chromium implant frameworks: fit and effect of ceramic veneering. Int J Oral Maxillofac Implants 2018; 33(3): 590-6.
  • 11. Kocaagaoglu H, Kilinc HI, Albayrak H, Kara M. In vitro evaluation of marginal, axial, and occlusal discrepancies in metal ceramic restorations produced with new technologies. J Prosthet Dent 2016; 116 (3): 368-74.
  • 12. Jang SH, Lee DH, Ha JY, Hanawa T, Kim KH, Kwon TY. Preliminary evaluation of mechanical properties of Co-Cr alloys fabricated by three new manufacturing processes. Int J Prosthodont 2015; 28 (4): 396-8.
  • 13. Vojdani M, Torabi K, Atashkar B, Heidari H, Torabi Ardakani M. A comparison of the marginal and internal fit of cobalt- chromium copings fabricated by two different CAD/CAM systems (CAD/ Milling, CAD/ Ceramill Sintron). J Dent 2016; 17 (4): 301-8.
  • 14. Kim KB, Kim JH, Kim WC, Kim JH. Three-dimensional evaluation of gaps associated with fixed dental prostheses fabricated with new technologies. J Prosthet Dent 2014; 112(6): 1432-6.
  • 15. Kim EH, Lee DH, Kwon SM, Kwon TY. A microcomputed tomography evaluation of the marginal fit of cobalt-chromium alloy copings fabricated by new manufacturing techniques and alloy systems. J Prosthet Dent 2017; 117 (3): 393-9.
  • 16. Ezoji F, Tabari K, Jaberi Ansari Z, Torabzadeh H, Kharrazi Fard MJ. Shear bond strength of a resin cement to different alloys subjected to various surface treatments. J Dent (Tehran) 2016; 13(1): 29-39.
  • 17. Hattar S, Hatamleh M, Khraisat A, Al-Rabab'ah M. Shear bond strength of self-adhesive resin cements to base metal alloy. J Prosthet Dent 2014; 111(5): 411-5.
  • 18. Fujimori K, Arita A, Kumagai T. Evaluation of bonding properties of G-Cem linkforce to ceramic restorations. Dent Mater 2016, 32 (Supplement 1), e28-e29.
  • 19. Zorzin J, Belli R, Wagner A, Petschelt A, Lohbauer U. Self-adhesive resin cements: adhesive performance to indirect restorative ceramics. J Adhes Dent 2014; 16(6): 541-6.
  • 20. Sabatini C, Patel M, D'Silva E. In vitro shear bond strength of three self-adhesive resin cements and a resin-modified glass ionomer cement to various prosthodontic substrates. Oper Dent 2013; 38(2): 186-96.