Fotoinitatörlerin Absorbsiyon Spektrumları ve Karşılaştırılmalarının Grafiksel İncelemesi

Işıkla polimerize olan restoratif materyallerin diş hekimliğinde yer edinmesiyle birlikte kullanılan ışık kaynaklarının da önemi artmıştır. Reçine esaslı kompozitler, reçine modifiye cam iyonomer simanlar, kompomerler, fissür örtücüler, geçici dolgu materyalleri ve sayamadığımız birçok restoratif materyalin polimerizasyonu ışık ile sağlanmaktadır. Polimerizasyonun başlaması için bir başlatıcıya ihtiyaç vardır. Bu başlatıcıya fotoinitatör denir ve bu fotoinitatörlerin aktivasyonu için de ışık kaynağı gereklidir. Kullanılan ışık kaynağının fotoinitatörlerin absorbsiyon spekturumuna uygun olması gerekmektedir. Aksi takdirde spektral uyumsuzluk meydana gelecek ve bu uyumsuzluk durumunda yeterli düzeyde aktifleşemeyen fotoinitatörler polimerizasyon sürecini tam olarak gerçekleştiremeyecektir. Bu bağlamda diş hekimlerinin kullandıkları malzemelerin içeriklerine dikkat etmeleri, üreticilerin de malzemelerine dâhil ettikleri başlatıcıları belirtmeleri oldukça önemlidir. Çünkü polimerizasyon eksikliği, yapılan restorasyonun klinik başarısını olumsuz yönde etkiler. Yetersiz polimerizasyon aşınma direncinin düşük olmasına ve restorasyonun zayıf mekaniksel özellikler göstermesine neden olmaktadır. Ayrıca monomer yapının polimer yapıya dönüşümünün tam olarak gerçekleşememesi ile birlikte artık monomer miktarında belirgin bir artışın meydana gelmesi pulpa dokusu üzerinde toksik etkilerin oluşmasına sebep olabilmektedir. Bu derleme çalışmamızda polimerizasyon sürecinden ve bu sürecin başlamasını sağlayan fotoinitatörlerden bahsedilecektir. Günümüz dolgu materyalleri içerisinde sıklıkla ihtiva eden başlatıcılardan olan kamforokinon, TPO (2,4,6-Trimethyl benzoyl diphenyl phosphine oxide), PPD (1-fenil-1,2-propandion) ve son zamanlarda yeni çıkan ve bazı ürünlerde bulunan Ivocerin®’in özellikleri anlatılacaktır. Bu fotoinitatörlerin absorbsiyon spektrumları ile tek ve çift pikli LED (light-emitting diode) ışık cihazlarının spektral aralıkları karşılaştırılıp, grafiksel olarak gösterilecektir.

Absorption Spectra of Photoinitiators and the Graphical Analysis of Their Comparison

With the use of light-cured restorative materials in dentistry, the importance of light sources has increased. The polymerization of resin-based composites, resin-modified glass ionomer cements, compomers, fissure sealants, temporary filling materials and countless other restorative materials is provided by light. An initiator is needed for polymerization to begin. This initiator is called a photoinitiator and a light source is required for the activation of these photoinitiators. The light source used should be suitable for the absorption spectrum of the photoinitiators. Otherwise, spectral mismatch will occur and photoinitiators that cannot be activated sufficiently in this mismatch will not be able to fully perform the polymerization process. In this context, it is very important for dentists to pay attention to the ingredients of the materials they use, and for manufacturers to specify the initiators they include in their materials as the lack of polymerization negatively affects the clinical success of the restoration. Insufficient polymerization causes poor wear resistance and poor mechanical properties of the restoration. In addition, the inability to fully convert the monomer structure to the polymer structure and the significant increase in the amount of residual monomer may cause toxic effects on the pulp tissue. In this review, we will talk about the polymerization process and the photoinitiators that enable this process to start. The features of Camphoroquinone, TPO (2,4,6-Trimethyl benzoyl diphenyl phosphine oxide), PPD (1-phenyl-1,2-propandione), which is one of the initiators that often contain in today's filling materials, and Ivocerin®, which is recently released and found in some products, will be explained. The absorption spectra of these photoinitiators and the spectral ranges of single and double peak LED (light-emitting diode) light devices will be compared and displayed graphically.

___

  • 1. Çelik Ç, Özel Y. Rezin Restoratif Materyallerin Polimerizasyonunda Kullanılan Işık Kaynakları. ADO Klinik Bilimler. 2008; 2(2): 109-15.
  • 2. Santini A, Gallegos IT, Felix CM. Photoinitiators in dentistry: a review. Prim Dent J. 2013;2(4):30-3.
  • 3. Randolph LD, Palin WM, Leprince JG. Composition of dental resin-based composites for direct restorations. In: Miletic V, editors. Dental Composite Materials for Direct Restorations. 1st ed., Springer; 2018. pp. 11-24.
  • 4. Aminoroaya A, Neisiany RE, Khorasani SN, Panahi P, Das O, Madry H, Gucchiarini M & Ramakrishna S. A review of dental composites: Challenges, chemistry aspects, filler influences, and future insights. Composites Part B: Engineering 2021;216: 108852.
  • 5. D'Ovidio TJ, Roberts RM, Gautam D, Marks ZD, Saraswathy M, Stansbury JW, Nair DP. Photopolymerization kinetics of methyl methacrylate with reactive and inert nanogels. J Mech Behav Biomed Mater. 2018;85:218-24.
  • 6. Randolph LD, Palin WM, Leloup G, Leprince JG. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent Mater. 2016;32(12):1586-99.
  • 7. Curtis AR, Palin WM, Fleming GJ, Shortall AC & Marquis PM. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique. Dent Mater. 2009; 25:180-87.
  • 8. Zimmerli B, Strub M, Jeger F, Stadler O, Lussi A. Composite materials: composition, properties and clinical applications. A literature review. Schweiz Monatsschr Zahnmed. 2010;120(11):972-86.
  • 9. Ilie N, Hickel R. Resin composite restorative materials. Aust Dent J. 2011;56 Suppl 1:59-66.
  • 10. Neumann MG, Miranda Jr WG, Schmitt CC, Rueggeberg FA & Correa IC. Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units. J Dent. 2005;33:525-32.
  • 11. Anusavice K. Phillips’ Science of Dental Materials. 11th ed., St. Louis, Saunders; 2003.pp.25-36.
  • 12. Ilie N, Keßler A, & Durner J. Influence of various irradiation processes on the mechanical properties and polymerisation kinetics of bulk-fill resin based composites. J Dent. 2013; 41: 695-702.
  • 13. Rueggeberg FA, Giannini M, Arrais CAG, Price RBT. Light curing in dentistry and clinical implications: a literature review. Braz Oral Res. 2017;31(suppl 1):e61.
  • 14. Leprince JG, Palin WM, Hadis MA, Devaux J & Leloup G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater. 2013;29:139-56.
  • 15. Opdam NJM, Van De Sande FH, Bronkhorst E, Cenci MS, Bottenberg P, Pallesen U, Huysmans MCDNJM & Van Dijken JW. Longevity of posterior composite restorations: a systematic review and meta-analysis. J Dent Res. 2014;93:943-49.
  • 16. Alshali RZ, Silikas N & Satterthwaite JD. Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent Mater. 2013;29:213-17.
  • 17. Tarle Z, Knezevic A, Demoli N, Meniga A, Sutalo J, Unterbrink G, Ristic M & Pichler G. Comparison of composite curing parameters: effects of light source and curing mode on conversion, temperature rise and polymerization shrinkage. Oper Dent. 2006;31:219-26.
  • 18. de Oliveira DC, Rocha MG, Gatti A, Correr AB, Ferracane JL, Sinhoret MA. Effect of different photoinitiators and reducing agents on cure efficiency and color stability of resin-based composites using different LED wavelengths. J Dent. 2015; 43(12):1565-72.
  • 19. Neumann MG, Schmitt CC, Ferreira GC, Correa IC. The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dent Mater. 2006;22:576-84.
  • 20. Camargo FM, Della Bona A, Moraes RR, Coutinho de Souza CR, Schneider LF. Influence of viscosity and amine content on CC conversion and color stability of experimental composites. Dent Mater. 2015;31:109-15.
  • 21. Abate PF, Zahra VN, Macchi RL. Effect of photopolymerization variables on composite hardness. J Prosthet Dent. 2001;86(6):632-35.
  • 22. Lee DS, Jeong TS, Kim S, Kim HI, Kwon YH. Effect of dual-peak LED unit on the polymerization of coinitiator containing composite resins. Dent Mater J. 2012;31:656–61.
  • 23. Ikemura K, Ichizawa K, Jogetsu Y, Endo T. Synthesis of a novel camphorquinone derivative having acylphosphine oxide group, characterization by UV-VIS spectroscopy and evaluation of photo polymerization performance. Dent Mater J. 2010;29: 122-31.
  • 24. Neumann MG, Schmitt CC, Correa IC & Goi BE. The effect of using mixed initiator systems on the efficiency of photopolymerization of dental resins. J Braz Chem Soc. 2008;19:1413-17.
  • 25. Rocha MG, De Oliveira DCRS, Correa IC, Correr-Sobrinho L, Sinhoreti MAC, Ferracane JL & Correr AB. Light-emitting diode beam profile and spectral output influence on the degree of conversion of bulk fill composites. Oper Dent. 2007; 42:418-27.
  • 26. Leprince JG, Hadis M, Shortall AC, Ferracane JL, Devaux J, Leloup G & Palin WM. Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dent Mater. 2011;27: 157-64.
  • 27. Miletic V, Santini A. Micro-Raman spectroscopic analysis of the degree of conversion of composite resins containing different initiators cured by polywave or monowave LED units. J Dent. 2012; 40: 106-13.
  • 28. Arikawa H, Takahashi H, Kanie T, Ban S. Effect of various visible light photoinitiators on the polymerization and color of light-activated resins. Dent Mater J. 2009;28:454-60.
  • 29. Oliveira DC, Rocha MG, Correa IC, Correr AB, Ferracane JL, Sinhoreti MA. The effect of combining photoinitiator systems on the color and curing profile of resin-based composites. Dent Mater. 2016;32: 1209-17.
  • 30. Schneider LF, Cavalcante LM, Consani S, Ferracane JL. Effect of co-initiator ratio on the polymer properties of experimental resin composites formulated with camphorquinone and phenyl-propanedione. Dent Mater. 2009; 25:369-75.
  • 31. Alvim HH, Alecio AC, Vasconcellos WA, Furlan M, de Oliveira JE & Saad JR. Analysis of camphorquinone in composite resins as a function of shade. Dent Mater. 2007;23:1245-49.
  • 32. Silami FDJ, Mundim FM, Garcia LDFR, Sinhoreti MAC & Pires-de-Souza FDCP. Color stability of experimental composites containing different photoinitiators. J Dent. 2013;41: e62-e66.
  • 33. Santini A. Current status of visible light activation units and the curing of light-activated resin-based composite materials. Dent Update. 2010;37(4):214-6, 218-20, 223-7.
  • 34. Ilie N, Hickel R. Can CQ be completely replaced by alternative initiators in dental adhesives? Dent Mater J. 2008;27:221-28.
  • 35. Ikemura K, Ichizawa K, Yoshida M, Ito S & Endo T. UV-VIS spectra and photoinitiation behaviors of acylphosphine oxide and bisacylphosphine oxide derivatives in unfilled, light-cured dental resins. Dental Mater J. 2008;27:765-74.