Cam Karbomerlerin Polimerizasyonundaki Sıcaklık Değişimlerinin Termografik Ölçümü

Bu in vitro çalışmanın amacı, cam karbomer (CK) ve rezin modifiye cam iyonomer simanların (RMCIS) LED ışık cihazıyla polimerizasyonu sırasında pulpa odası ve restorasyon yüzeyinde meydana gelen sıcaklık artışını ölçmektir. 20 adet çürüksüz ve daha önceden restore edilmemiş üçüncü büyük azı dişlere distal slot kavite açıldı. Grup 1 rezin modifiye cam iyonomer simanla (Fuji II LC, GC Corp, Leuven, Belçika), Grup 2 cam karbomerle (Glass Carbomer, GCP Dental, Vianen, Hollanda) restore edildi. Üretici firmaların talimatları doğrultusunda Grup 1 20 sn, Grup 2 80 sn 1,200 mW/cm2 gücünde LED ışık cihazıyla (VALO LED,Ultradent, South Jordan, ABD) polimerizasyonu sağlanmıştır. Yüksek çözünürlüklü infrared termal kamera (Testo 865, Testo Limited, Hampshire, İngiltere) ile anlık görüntüler alınmıştır. Son saniyedeki görüntü özel bir yazılımla (IRSoft v4.3, Testo SE, Lenzkirch, Almanya) değerlendirilmiştir. Infrared kamera ile oda sıcaklığı 26ºC olarak ölçülmüştür. Tüm bölgelerde, CK daha yüksek değerler göstermiştir. Restorasyon yüzeyinde CK 19,1±0,68°C sıcaklık artışı gösterirken RMCIS 13,53±1,96°C değerlerinde bir artış göstermiştir. Pulpa odasında ise CK 7,9±0,9°C, RMCIS 4,33±1,23°C sıcaklık artışı göstermişlerdir. Bu çalışmanın koşulları altında, cam karbomerin pulpa odasının sıcaklığını önemli derecede yükselttiği görülmüştür. Bu sıcaklık artışı sonucunda pulpada hasar meydana gelebilir.

Thermographic Measurement Of Temperature Rise Induced During Glass Carbomer Polymerization

The purpose of this in vitro study was to measure the pulp chamber and restoration surface temperature increase induced during glass carbomer (CK) and resin modified glass ionomer cement (RMCIS)polymerization with a LED-light-curing-unit. Twenty caries and restoration-free human third molars were prepared with distal slot preparations and were filled either with a resin modified glass ionomer cement (Fuji II LC, GC Corp, Leuven, Belgium)(Group 1); a glass carbomer cement ( Glass Carbomer, (GCP Dental, Vianen, The Netherlands))(Group 2). Group 1 were cured with a LED-light-cure (VALO LED,Ultradent, South Jordan, USA) with an intensity of 1,200 mW/cm2 for 20 seconds. But Group 2 cured for 80 seconds according to the manufacturer’s directions using same curing unit. In the last seconds of polymerization, photos of evaluation were taken with an high-resolution infrared camera (Testo 865, Testo Limited, Hampshire, UK). Photos analyzed with software (IRSoft v4.3, Testo SE, Lenzkirch, Germany) and the values of the room, restoration surface and pulp chamber temperature were recorded. Room temperature was recorded 26°C with infrared camera during study. In both regions, CK showed statistically significantly higher temperature increase than RMCIS. (p<0.05) On the restoration surfaces, CK was 19,1°C±0,68°C and RMCIS was 13,53°C±1,96°C. The effect of CK and RMCIS polymeriaztion on pulpal chamber temprature increase were 7,9°C±0,9°C and 4,33°C±1,23°C respectively. The range of temperature rise measured in this study (mean 7,9°C±0,9°C) would suggest that the pulp may be endangered by the temperature rise which occurs during glass carbomer polymerization in vivo.

___

  • 1. Cefaly DF, Valarelli FP, Seabra BG, Mondelli RF, Navarro MF. Effect of time on the diametral tensile strength of resin-modified restorative glass ionomer cements and compomer. Braz Dent J. 2001;12(3):201-4.
  • 2. Dowling AH, Fleming GJ. Are encapsulated anterior glass-ionomer restoratives better than their hand-mixed equivalents? J Dent. 2009;37(2):133-40.
  • 3. Gorseta K, Borzabadi-Farahani A, Moshaverinia A, Glavina D, Lynch E. Effect of different thermo-light polymerization on flexural strength of two glass ionomer cements and a glass carbomer cement. J Prosthet Dent. 2017;118(1):102-7.
  • 4. Cehreli SB, Tirali RE, Yalcinkaya Z, Cehreli ZC. Microleakage of newly developed glass carbomer cement in primary teeth. Eur J Dent. 2013;7(1):15-21.
  • 5. Gorseta K, Skrinjaric T, Glavina D. The effect of heating and ultrasound on the shear bond strength of glass ionomer cement. Coll Antropol. 2012;36(4):1307-12.
  • 6. Al-Qudah AA, Mitchell CA, Biagioni PA, Hussey DL. Thermographic investigation of contemporary resin-containing dental materials. J Dent. 2005;33(7):593-602.
  • 7. Hussey DL, Biagioni PA, Lamey PJ. Thermographic measurement of temperature change during resin composite polymerization in vivo. J Dent. 1995;23(5):267-71.
  • 8. Goodis HE, White JM, Gamm B, Watanabe L. Pulp chamber temperature changes with visible-light-cured composites in vitro. Dent Mater. 1990;6(2):99-102.
  • 9. Zach L, Cohen G. Pulp Response to Externally Applied Heat. Oral Surg Oral Med Oral Pathol. 1965;19:515-30.
  • 10. Ozturk B, Ozturk AN, Usumez A, Usumez S, Ozer F. Temperature rise during adhesive and resin composite polymerization with various light curing sources. Oper Dent. 2004;29(3):325-32.
  • 11. Mousavinasab SM, Khoroushi M, Moharreri M. Temperature Rise during Primer, Adhesive, and Composite Resin Photopolymerization of a Low-Shrinkage Composite Resin under Caries-Like Dentin Lesions. ISRN Dent. 2012;2012:198351.
  • 12. Yazici AR, Muftu A, Kugel G, Perry RD. Comparison of temperature changes in the pulp chamber induced by various light curing units, in vitro. Oper Dent. 2006;31(2):261-5.
  • 13. Attrill DC, Davies RM, King TA, Dickinson MR, Blinkhorn AS. Thermal effects of the Er:YAG laser on a simulated dental pulp: a quantitative evaluation of the effects of a water spray. J Dent. 2004;32(1):35-40.
  • 14. Malkoc S, Uysal T, Usumez S, Isman E, Baysal A. In-vitro assessment of temperature rise in the pulp during orthodontic bonding. Am J Orthod Dentofacial Orthop. 2010;137(3):379-83.
  • 15. Tosun G, Usumez A, Yondem I, Sener Y. Temperature rise under normal and caries-affected primary tooth dentin disks during polymerization of adhesives and resin-containing dental materials. Dent Mater J. 2008;27(3):466-70.
  • 16. Mahant RH, Chokshi S, Vaidya R, Patel P, Vora A, Mahant P. Comparison of the Amount of Temperature Rise in the Pulp Chamber of Teeth Treated With QTH, Second and Third Generation LED Light Curing Units: An In Vitro Study. J Lasers Med Sci. 2016;7(3):184-91.
  • 17. Millen C, Ormond M, Richardson G, Santini A, Miletic V, Kew P. A study of temperature rise in the pulp chamber during composite polymerization with different light-curing units. J Contemp Dent Pract. 2007;8(7):29-37.
  • 18. Menne-Happ U, Ilie N. Effect of gloss and heat on the mechanical behaviour of a glass carbomer cement. J Dent. 2013;41(3):223-30.
  • 19. Kleverlaan CJ, van Duinen RN, Feilzer AJ. Mechanical properties of glass ionomer cements affected by curing methods. Dent Mater. 2004;20(1):45-50.
  • 20. O'Brien T, Shoja-Assadi F, Lea SC, Burke FJ, Palin WM. Extrinsic energy sources affect hardness through depth during set of a glass-ionomer cement. J Dent. 2010;38(6):490-5.
  • 21. Kahvecioglu F, Tosun G, Ulker HE. Intrapulpal Thermal Changes during Setting Reaction of Glass Carbomer(R) Using Thermocure Lamp. Biomed Res Int. 2016;2016:5173805.
  • 22. Hse KM, Leung SK, Wei SH. Resin-ionomer restorative materials for children: a review. Aust Dent J. 1999;44(1):1-11.
  • 23. Rueggeberg FA, Caughman WF, Curtis JW, Jr. Effect of light intensity and exposure duration on cure of resin composite. Oper Dent. 1994;19(1):26-32.
  • 24. Unterbrink GL, Muessner R. Influence of light intensity on two restorative systems. J Dent. 1995;23(3):183-9.
  • 25. Uzel A, Buyukyilmaz T, Kayalioglu M, Uzel I. Temperature rise during orthodontic bonding with various light-curing units--an in vitro study. Angle Orthod. 2006;76(2):330-4.
  • 26. Al-Qudah AA, Mitchell CA, Biagioni PA, Hussey DL. Effect of composite shade, increment thickness and curing light on temperature rise during photocuring. J Dent. 2007;35(3):238-45.