GERİ DÖNÜŞÜM PAMUK/PAMUK ELYAF KARIŞIMINDAN ÜRETİLEN OE-ROTOR İPLİK ÖZELLİKLERİ ÜZERİNDE İPLİK PARAMETRELERİNİN ETKİLERİ

Tekstil ve konfeksiyon sektörünün ana hammaddesi olan pamuk lifinin çevresel yük sorunu, lifin yaşam döngüsünün uzamasını zorunlu kılmaktadır. Ancak bilgi eksikliği, pamuğun geri dönüşümü ve işlenmesindeki engellerden biridir. Bu çalışmada, tüketim öncesi pamuk ürünlerinden (r-CO) elde edilen geri dönüştürülmüş pamuk lifleri ile işlenmemiş pamuk (C) liflerinin %50/50 oranlarında karışımlarından Open-end rotor iplikleri (OE-Rotor) eğrilmiştir. Üretim parametrelerinin (rotor tipi, navel tipi ve tork tipi) iplik özelliklerine etkileri incelenmiştir. Elde edilen sonuçlara göre, üretim parametrelerinin mukavemet değerleri dışında ölçülen tüm iplik özellikleri üzerindeki etkisi istatistiksel olarak anlamlıdır. En dar yivli rotor tipi, çentiksiz spiral navel tipi ve büküm durdurma etkisi olmayan yeşil tork tipi ile üretilen %50/50 r-CO/C open-end rotor iplik numunelerinin daha düşük düzgünsüzlük, tüylülük, IPI ve daha yüksek kopma uzaması değerleri gösterdiği tespit edilmiştir.

THE EFFECTS OF OE-ROTOR SPINNING PARAMETERS ON YARN PROPERTIES PRODUCED FROM RECYCLED/VIRGIN COTTON FIBERS BLEND

The environmental load problem of the cotton fiber such as amount of water and pesticides used in the agricultural sector, the main raw material of the textile and apparel industry, obligates the extension of the fiber's life cycle. In order to ensure the sustainability of resources, efficient use of natural supplies and evaluation of recyclable wastes are required. However information lacking is the one of barriers in recycling and processing of cotton. In this study, open-end rotor yarns (OE-Rotor) were spun from the blends of recycled cotton fibers obtained from pre-consumer cotton products (r-CO) and the virgin cotton (C) fibers with 50/50 % ratios. The effects of production parameters (rotor type, navel type and torque type) on yarn properties were examined. According to the results the effect of the production parameters on all measured yarn properties except tenacity values, is statistically significant. It was concluded that %50/50 r-CO/C open-end rotor yarn samples producing by rotor type with narrowest groove, spiral navel type without notch and green torque type without twist stopping effect, led to lower unevenness, hairiness, IPI and higher breaking elongation.

___

  • 1. Shirvanimoghaddam, K. Motamed, B. Ramakrishna, S. Naebe, M. 2020. Death by waste: Fashion and textile circular economy case, Science of the Total Environment, 718, 137317, https://doi.org/ 10.1016/j.scitotenv.2020.137317
  • 2. NCM, In: Nordic act (Ed.), 2015. Copenhagen, Nordisk Ministerråd, 10.6027/anp2015-764.
  • 3. The price of fast fashion, 2018. Nature Climate Change, (8):1, https://doi.org/10.1038/s41558-017-0058-9
  • 4. Yücel, S., Tiber, B., 2018. Hazır giyim endüstrisinde sürdürülebilir moda, Tekstil ve Mühendis, 25 (112): 370-380. https://doi.org/10.7216/1300759920182511211
  • 5. Meng, X., Fan, W., Ma,Y., Wei, T., Dou ,H., Yang, X., Tian, H., Yu, Y., Zhang, T., and Gao, L., 2019. Recycling of denim fabric wastes into high-performance composites using the needle-punching nonwoven fabrication route, Textile Research Journal, https://doi.org/10.1177/0040517519870317
  • 6. Dahlbo H., Aalto K., Eskelinen H., Salmenperä H., 2017. Increasing textile circulation: Consequences and requirements, Sustainable Production and Consumption, 9, 44. https://doi.org/10.1016/j.spc.2016.06.005
  • 7. Dissanayake D.G.K, Weerasinghe D.U, Thebuwanage L.M, Bandara U.A.A.N. 2021. An environmentally friendly sound insulation material from post-industrial textile waste and natural rubber, Journal of Building Engineering, 33, 2021, 101606. https://doi.org/10.1016/j.jobe.2020.101606
  • 8. Liu Y., Huang H., Zhu L., Zhang C., Ren F., Liu Z., 2020. Could the recycled yarns substitute for the virgin cotton yarns: a comparative LCA, International Journal of Life Cycle Assessment, 25, 2050, https://doi.org/10.1007/s11367-020-01815-8
  • 9. Suárez-Eiroa B., Fernández E., Méndez-Martínez G., Soto-Oñate D., 2019. Operational principles of circular economy for sustainable development: Linking theory and practice, Journal of Cleaner Production, 214, 952. https://doi.org/10.1016/j.jclepro.2018.12.271
  • 10. Riba J.-R., Cantero R., Canals T., Puig R., 2020. Circular economy of post-consumer textile waste: Classification through infrared spectroscopy, Journal of Cleaner Production, 272, 123011, https://doi.org/10.1016/j.jclepro.2020.123011
  • 11. Ütebay B., Çelik P., Çay A., 2020. IntechOpen, Textile Wastes: Status and Perspectives https://doi.org/10.5772/intechopen.92234
  • 12. Textile Exchange, 2020. Preferred Fiber & Materials Market Report, https://textileexchange.org/wp-content/uploads/2020/06/Textile-Exchange_Preferred-Fiber-Material-Market-Report_2020.pdf, (2021, June 10)
  • 13. Aronsson J., Persson A., 2020. Tearing of post-consumer cotton T-shirts and jeans of varying degree of wear, Journal of Engineered Fibers and Fabrics, 15, https://doi.org/10.1177/1558925020901322
  • 14. Radhakrishnan, S., 2017. Denim recycling, Textiles and clothing sustainability. Springer, Singapore, 79–125.
  • 15. Eryuruk S.H., 2012. Greening of the textile and clothing industry, Fibres & Textiles in Eastern Europe, 95(6): 22-27.
  • 16. Bevilacqua M., Ciarapica F.E, Mazzuto G., Paciarotti C., 2014. Environmental analysis of a cotton yarn supply Chain, Journal of Cleaner Production, 82, 154. https://doi.org/10.1016/j.jclepro.2014.06.082
  • 17. Esteve-Turrillas F., Guardia M., 2017. Environmental impact of Recover cotton in textile industry, Resources, Conservation & Recycling, 116, https://doi.org/10.1016/J.RESCONREC.2016.09.034
  • 18. Eser, B., Çelik, P., Çay, A., Akgümüş, D., 2016. Tekstil ve konfeksiyon sektöründe sürdürülebilirlik ve geri dönüşüm olanakları, Tekstil ve Mühendis, 23(101): 47. http://dx.doi.org/10.7216/1300759920162310105
  • 19. Rieter, https://www.rieter.com/products/spinning-systems/recycling-spinning-system, (2021, November 10).
  • 20. Spathas T., 2017.The Environmental Performance of High Value Recycling for the Fashion Industry LCA for four case studies, Master’s Dissertation, CUT, Gothenburg.
  • 21. Ei-Nouby, G. M., Azzam, H. A., Mohamed, S. T., El-Sheikh, M. N. 2005. Textile waste-material recycling part I: ways and means. Paper presented at the 2nd International Conference of Textile Research Division NRC, Cairo, Egypt.
  • 22. Wang Y., 2006. Recycling in textiles, Woodhead Publishing in Textiles, Cambridge.
  • 23. Vasanth Kumar D., Raja D., 2021. Study of Thermal Comfort Properties on Socks made from Recycled Polyester/Virgin Cotton and its Blends, Fibers and Polymers, https://doi.org/10.1007/s12221-021-0471-6
  • 24. Merati A. A., Okamura M., 2004. Producing Medium Count Yarns from Recycled Fibers with Friction Spinning, Textile Research Journal, 74(7), 640, https://doi.org/10.1177/004051750407400715.
  • 25. Demiroz Gun, A., Oner, E., 2019. Investigation of the quality properties of open-end spun recycled yarns made from blends of recycled fabric scrap wastes and virgin polyester fibre, The Journal of The Textile Institute, 110(11):1569-1579, https://doi.org/10.1080/00405000.2019.1608620.
  • 26. Ütebay B., Çelik P., Çay A., 2019. Effects of cotton textile waste properties on recycled fibre quality, Journal of Cleaner Production, Volume 222:29-35. https://doi.org/10.1016/j.jclepro.2019.03.033
  • 27. Demiroz Gun A., Akturk H. N., Macit A. S. , Alan G. 2014. Dimensional and physical properties of socks made from reclaimed fibre. The Journal of The Textile Institute, 105(10): 1108- 1117. https://doi.org/10.1080/00405000.2013.876152
  • 28. Halimi M.T, Ben Hassen M., Azzouz B., Sakli F. 2007. Effect of cotton waste and spinning parameters on rotor yarn quality, The Journal of The Textile Institute, 98(5):437-442, https://doi.org/10.1080/00405000701547649
  • 29. Bhatia D., Sharma A., Malhotra U., 2014. Recycled fibers: An overview, Indian Journal of Fibre & Textile Research., 4, 77.
  • 30. Hasani H., Tabatabaei S.A.., 2011. Optimizing the Spinning Variables to Reduce the Hairiness of Rotor Yarns Produced from Waste Fibers Collected from Ginning Process, Fibres & Textiles in Eastern Europe, 19 (86), 21-25.
  • 31. Hasani, H., Semnani, D., Tabatabaei, S. 2010. Determining the optimum spinning conditions to produce the rotor yarns from cotton wastes. Industria Textila, 61: 259–264.
  • 32. Kaplan S., Göktepe Ö., 2006. Investigation into navel selection for rotor spinning machine using cotton waste, Fibres & Textiles in Eastern Europe, 14(3):57.
  • 33. Wang H, Memon H, Abro R, Shah A. 2020. Sustainable approach for mélange yarn manufacturers by recycling dyed fibre waste. Fibres & Textiles in Eastern Europe, 28, 3(141): 18-22. https://doi.org/10.5604/01.3001.0013.9013
  • 34. Halimi M.T, Ben Hassen M., Sakli F. 2008. Cotton waste recycling: Quantitative and qualitative assessment, Resources, Conservation & Recycling, 52(5):785-791
  • 35. Yilmaz D, Yelkovan S, Tirak Y. 2017. Comparison of the effects of different cotton fibre wastes on different yarn types. Fibres & Textiles in Eastern Europe, 25, 4(124): 19-30. https://doi.org/10.5604/01.3001.0010.2340
  • 36. Khan K.R, Hossain M.M, Sarker R.C, 2015. Statistical analyses and predicting the properties of cotton/waste blended open-end rotor yarn using taguchi oa design, International Journal of Clothing Science and Technology, 4(2):27-35. https://doi.org/ 10.5923/j.textile.20150402.01
  • 37. Wanassi B., Ben Hassen M., Azouz B., 2016. Value-added waste cotton yarn: Optimization of recycling process and spinning of reclaimed fibers. Industrial Crops and Products, 87:27–32.
  • 38. Wanassi B., Azzouz B., Ben Hassen M., 2015. Recycling of post-industrial cotton wastes: Quality and rotor spinning of reclaimed fibers, International Journal of Advanced Research, 3 (6): 94-103.
  • 39. Radhakrishnan S., Kumar S., 2018. Recycled Cotton from Denim Cut Waste, In book: sustainable innovations in recycled textiles, https://doi.org/10.1007/978-981-10-8515-4_3
  • 40. Kurtoǧlu Necef Ö., Seventekin N., Pamuk M., 2013. A study on recycling the fabric scraps in apparel manufacturing industry, Tekstil ve Konfeksyon, 23(3):286-289. https://doi.org/10.13140/RG.2.2.16006.40009
  • 41. Lawrence, C.A., 2003. Fundamentals of spun yarn technology, CRC Press LLC,US.
  • 42. Copeland, A.D., Hergeth, H.H.A., Smith, G., 1999. Çekme düzesi formunun open-end ipliği kalitesi üzerindeki etkileri, Tekstil Maraton Dergisi, 6: 38-42.
  • 43. Ayan H. E., Sabır E. C., 2013, Eğirme Parametrelerinin İplik Kalitesine Etkisi, Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 28(1), 111-118, https://muhendislik.cu.edu.tr/tr/Dergi/(28_1_2013)/11.pdf
  • 44. Erbil Y, Babaarslan O, Baykal PD. 2008. Influence of navel type on the hairiness properties of rotor-spun blend yarns, Fibres & Textiles in Eastern Europe, Vol. 16, No. 2 (67): 31–34.
  • 45. Buharalı G., Ömeroğlu S., 2013. Konvansiyonel Ring ve Yeni Bir Modifiye Ring İplik Eğirme Sistemi Kullanilarak Üretilen İplik ve Kumaşlarin Bazi Özelliklerinin Karşilaştirilmasi, Uludağ University Journal of The Faculty of Engineering, 18 (2), https://doi.org/10.17482/uumfd.616136
  • 46. Esfahani RT., Shanbeh M., 2014. ‘Effect of Navel and Rotor Type on Physical and Mechanical Properties of Viscose Rotor Spun Yarns, Fibres & Textiles in Eastern Europe, 22, 3 (105).
  • 47. Manich A., De Castellar D., Barella A., 1986, Influence of a Yarn Extractive Nozzle on the Apparent Loss of Twist in Rotor Open-End Acrylic Staple Spun Yarns, Textile Research Journal, 56, 3: 207-211. https://doi.org/10.1177/004051758605600308