Mikrobiyal Yakıt Hücresi Teknolojisini Kullanarak Atıksu Arıtımı ve Biyoenerji Üretimi: Literatür Araştırması

Son yıllarda nüfus miktarının hızlı bir şekilde artması ve sanayinin gelişmesiyle birlikte ihtiyaç duyulan enerji ihtiyacı mevcut kısıtlı kaynaklarla yeteri kadar sağlanamamakta, enerji üretim ve tüketim arasındaki açık giderek artmaktadır. Fosil tabanlı enerji kaynaklarının gelecekte tükeneceği göz önüne alındığında oluşacak su kıtlığı ve çevre kirliliği sorunları; sürdürülebilir bir atıksu arıtımı ve enerji üretimi için çevre dostu olan yeni teknolojiler bulmayı zorunlu kılmaktadır. Son zamanlarda karşımıza çıkan mikrobiyal yakıt hücreleri (MYH), organik maddeyi mikroorganizmaların metabolik aktivitesiyle elektrik enerjisine dönüştürebilen biyoelektrokimyasal sistemlerdir. Bu sistemde aynı anda farklı atıksuların arıtımı ve elektrik üretimi yapılabilmektedir. Bu çalışmada, ilk olarak MYH teknolojisinin genel yapısından, atıksu arıtımı ve enerji üretiminde kullanılmasından bahsedilmiştir. Daha sonra MYH’ lerin kullanıldığı, atıksu arıtımı ve enerji üretimiyle ilgili yapılmış çalışmalar derlenmiş ve bu teknolojinin mevcut zorluklarından, gelecek potansiyellerinden bahsedilmiştir.

Wastewater Treatment and Bioenergy Production Using Microbial Fuel Cell Technology: Literature Research

With the rapid increase in the population amount and the development of the industry in recent years, the energy requirement needed cannot be met sufficiently with the limited resources available, and the gap between energy production and consumption is gradually increasing. Considering that fossil-based energy sources will be exhausted in the future, water scarcity and environmental pollution problems; it requires finding new environmentally friendly technologies for sustainable wastewater treatment and power generation. Microbial fuel cells (MFC), which we have encountered recently, are bioelectrochemical systems that can convert organic matter into electrical energy by the metabolic activity of microorganisms. In this system, different wastewater treatment and electricity can be produced simultaneously. In this system, different wastewater treatment and electricity can be produced simultaneously. In this study, firstly, the general structure of MYH technology, its use in wastewater treatment and energy production are mentioned. Then, studies on wastewater treatment and energy production using MYHs were compiled and current difficulties and potentials of this technology were discussed.

___

  • [1] Kumar, S. S., Kumar, V., Malyan, S. K., Sharma, J., Mathimanic, T., Maskarenjd, M. S., Ghoshd, P. C., Pugazhendhi, A., 2019, Microbial Fuel Cells (Mfcs) For Bioelectrochemical Treatment of Different Wastewater Streams, Fuel, Vol. 254,115526.
  • [2] Özpek, Ö., 2012, Atıksu Kullanılarak Mikrobiyal Yakıt Hücresi İle Elektrik Üretimi, Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ.
  • [3] Karçiçeği, D., 2010, PEM Yakıt Hücresi Anodunda Kullanılmak Üzere Platinin İkili Alaşımlarının Sentezi, Karakterizasyonu ve CO Kirliliğinin Belirlenmesi, Yüksek Lisans Yezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • [4] Demir, Ö., Gümüş E., 2016, Mikrobiyal Yakıt Hücreleri İle Çamur Arıtımı ve Elektrik Üretimi, Sinop Üniversitesi Fen Bilimleri Dergisi, 81-89.
  • [5] Çatal, T., Bermek, H., Liu, H., 2009, Removal of Selenite From Wastewater Using Microbial Fuel Cells, Biotechnol Lett, Vol. 31, 1211-1216.
  • [6] Li, W. W., Yu, H. Q., He, Z., 2014, Towards Sustainable Wastewater Treatment Byusing Microbial Fuel Cells-Centered Technologies, Energy & Environmental Science, Vol. 7, 911-924.
  • [7] Singh, H. M., Pathak, A. K., Chopra, K., Tyagi, V. V., Anand, S., Kothari, R., 2018, Microbial Fuel Cells: a Sustainable Solution For Bioelectricity Generation and Wastewater Treatment, Biofuels, 1759-7277.
  • [8] Gude, V. G., 2016, Wastewater Treatment in Microbial Fuel Cells an Overview, Journal of Cleaner Production, Vol. 122, 287-307.
  • [9] Akoğlu, B., 2011, Mikrobiyal Yakıt Hücresi Teknolojisi İle Doğrudan Elektrik Üretimi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • [10] Çetinkaya, A. Y., 2013, Mikrobiyal Yakıt Hücresi Teknolojisi İle Sızıntı Suyundan Elektrik Enerjisi Üretimi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • [11] Farber, P., Gräbel, J., Kroppen, N., Pötschke, L., Roos, D., Rosenbaum, M., Stegschuster, G., Ueberholz, P., 2019, Electricity Generation in a Microbial Fuel Cell With Textile Carbon Fibre Anodes, Computers and Mathematics With Applications, 1-20.
  • [12] Ghangrekar, M. M., Shinde, V. B., 2007, Performance of Membrane-Less Microbial Fuel Cell Treating Wastewater and Effect of Electrode Distance and Area On Electricity Production. Bioresource Technology, Vol. 98, 2879-2885.
  • [13] Pant, D., Bogaert, G. B., Diels, L., Vanbroekhoven, K., 2009, A Review Of The Substrates Used in Microbial Fuel Cells (Mfcs) For Sustainable Energy Production, Bioresource Technology, Vol. 101, 1533-1543.
  • [14] Pant, D., Bogaert, G. V., Smet, M. D., Diels, L., Vanbroekhoven, K., 2010, Use of Novel Permeable Membrane and Air Cathodes in Acetate Microbial Fuel Cells, Electrochimica Acta, Vol. 55, 7710-7716.
  • [15] Dhungana, P., 2017, Modified Gold Electrode And Hollow Mn3O4 Nanoparticles As Electrode Materials For Microbial Fuel Cell Applications, Yüksek Lisans Tezi, University of South Dakota Department of Chemistry, Nepal.
  • [16] Jia, J., Tang, Y., Liu, B., Wu, L., Ren, N., Xing, D., 2013, Electricity Generation From Food Wastes and Microbial Community Structure in Microbial Fuel Cells, Bioresource Technology, Vol. 144, 1-94.
  • [17] Jadhav, D. A., Ghadge, A. N., Mondal, D., Ghangrekar, M. M., 2014, Comparison of Oxygen and Hypochlorite as Cathodic Electron Acceptor in Microbial Fuel Cells, Bioresource Technology, Vol. 154, 330-335.
  • [18] Mohamed, H. O., Obaid, M., Khalil, K. A., Barakat, N. A. M., 2016, Power Generation From Unconditioned İndustrial Wastewaters Using Commercial Membranes-Based Microbial Fuel Cells, İnternational Journal of Hydrogen Energy, Vol. 41, 4251-4263.
  • [19] Xu, G., Zheng, X., Lu, Y., Liu, G., Luo, H., Li, X., Zhang, R., Jin, S., 2019, Development of Microbial Community Within The Cathodic Biofilm of Single-Chamber Air-Cathode Microbial Fuel Cell, Science of the Total Environment, Vol. 665, 641-648.
  • [20] You, S., Zhao, Q., Zhang, J., Jiang, J., Zhao, S., 2006, A Microbial Fuel Cell Using Permanganate As The Cathodic Electron Acceptor, Journal of Power Sources, Vol. 162, 1409-1415.
  • [21] Flimban, S. G. A., Hassan, S. H. A., Rahman, M. M., Oh, S., 2018, The Effect of Nafion Membrane Fouling On The Power Generation of a Microbial Fuel Cell, Science Direct, 1-9.
  • [22] Xia, T., Zhang, X., Wang, Y., Gao, Y. Bian, C., Wang, X., Xu, P., 2019, Power Generation and Microbial Community Analysis in Microbial Fuel Cells: A Promising System to Treat Organic Acid Fermentation Wastewater, Bioresource Technology, Vol. 284, 72-79.
  • [23] Asefi, B., Li, S. Y., Henry, A. M., Sanchez-Torresa, V., Hu, A., Li, J., Yu, C. P. 2019, Characterization Of Electricity Production and Microbial Communityof Food Waste-Fed Microbial Fuel Cells, Process Safety and Environmental Protection, Vol. 125, 83-91.
  • [24] He, C. S., Mu, Z. X., Yang, H. Y., Wang, Y. Z., Mu, Y., Yu, H. Q., 2015, Electron Acceptors For Energy Generation in Microbial Fuel Cells Fed With Wastewaters: a Mini-Review, Chemosphere, Vol. 104, 12-17.
  • [25] Logan, B. E., Regan, J. M., 2006., Electricity-Producing Bacterial Communities in Microbial Fuel Cells, Trends in Microbiology, Vol. 14, 512-518.
  • [26] Kılıç, A., Uysal, Y., Çınar, Ö., 2011, Laboratuvar Ölçekli Bir Mikrobiyal Yakıt Hücresinde Sentetik Atıksudan Elektrik Üretimi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 17, Sayı 1, ss. 43-49.
  • [27] Damiano, L., 2009, Electricity Production From The Management of Municiple Solid Waste Leachate With Microbial Fuel Cells, Thesis, New Hampshire University, Civil Engineering.
  • [28] Lu, N., Zhou, S. G., Zhuang, L., Zhang, J. T., Ni, J. R., 2009, Electricity Generation From Starch Processing Wastewater Using Microbial Fuel Cell Technology, Biochemical Engineering Journal, Vol. 43, 246-251.
  • [29] Gezginci, M., Uysal, Y., Kılıç, A., Çınar, Ö., 2011, Mikrobiyal Yakıt Hücrelerinde Ekstraselüler Elektron Transferleri, Biyoloji Bilimleri Araştırma Dergisi, Vol. 4 (2), 81-85.
  • [30] Peixoto, L., 2012, Microbial Fuel Cells For Autonomous Systems: Kinetics and Technological Advances in Wastewater Treatment and Sensor Applications, Doctoral Dissertation for Degree in Chemical and Biological Engineering.
  • [31] Güçlü, E. N., 2013, Enterobacter Aerogenes ve Rekombinant Suşlarında Mikrobiyal Yakıt Pili Uygulaması, Yüksek Lisans Tezi, İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Malatya.
  • [32] Bond, D. R., Lovley, D.R., 2003, Electricity Production By Geobacter Sulfurreducens Attached To Electrodes, Applied and Environmental Microbiology, Vol. 69 (3), 1548-1555.
  • [33] Lovley, D. R., 2006, Microbial Fuel Cells: Novel Microbial Physiologies and Engineering Approaches, Current Opinion in Biotechnology,Vol. 17, 327-332.
  • [34] Rabaey, K., Verstraete, W., 2005, Microbial Fuel Cells: Novel Biotechnology For Energy Generation, Trends in Biotechnology, Vol. 23, 291-298.
  • [35] Huang, L., Regan, J. M., Quan, X., 2011, Electron Transfer Mechanisms, New Applications and Performance of Biocathode Microbial Fuel Cells, Bioresource Technology, Vol.102, 316-323.
  • [36] Mustakeem, 2015, Electrode Materials for Microbial Fuel Cells: Nanomaterial Approach, Mater Renew Sustain Energy, 4-22.
  • [37] Slate, A. J., Whiteheada, K. A., Brownsona, D. A. C., Banks, C. E., 2019, Microbial Fuel Cells: an Overview of Current Technology, Renewable and Sustainable Energy Reviews, Vol. 101, 60-81.
  • [38] Gil, G., Chang, I., Kim, B. H., Kim, M., Jang, J., Park, H. S., Kim, H. J., 2003, Operational Parameters Affecting The Performance of a Mediator-Less Microbial Fuel Cell, Biosensors and Bioelectronics, Vol. 18, 327-334.
  • [39] Karluvalı, A., 2016, Kompozit Tubular Elektrot Kullanılan Mikrobiyal Yakıt Hücresinde Biyobozunur Atıklardan Elektrik Enerjisi Üretimi, Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • [40] Butler, C. S., 2009, Fundamental and Applied Studies of Microbial Fuel Cells For Sustainable Water and Wastewater Treatment, Master Thesis, Civil Engineering and Geological Sciences, İndiana.
  • [41] Rahimnejad, M., Mokhtarian, N., Najafpour, G. D., Wan Daud, W. R., Ghoreyshi, A. A., 2009, Low Voltage Power Generation in Abiofuel Cell Using Anaerobic Cultures, World Applied Sciences Journal, Vol. 6, 1585-1588.
  • [42] Ghasemi, M., Wan Daud, W. R., Hassan, S. H. A., Oh, S., İsmail, M., Rahimnejad, M., Jahim, J. M., 2013, Nano-Structured Carbon as Electrode Material in Microbial Fuel Cells: a Comprehensive Review, Journal of Alloys and Compounds, Vol. 580, 245-255.
  • [43] Logan, B. E., 2010, Scaling up microbial fuel cells and other bioelectrochemical systems, Microbiol Biotechnol, Vol. 85, 1665-1671.
  • [44] Liu, Y., Harnisch, F., Fricke, K., Schröder, U., Climent, V., Feliu, J. M., 2010, ‘‘The Study of Electrochemically Active Microbial Biofilms On Different Carbon-Based Anode Materials in Microbial Fuel Cells’’, Biosensors and Bioelectronics, Vol. 25, 2167-2171.
  • [45] Hernández-Fernández, F. J., Ríos, A. P., Salar-García, M. J., Ortiz-Martínez, V. M., Lozano-Blanco, L. J., Godínez, C., Tomás-Alonso, F., Quesada-Medina, J., 2015, Recent Progress And Perspectives in Microbial Fuel Cells For Bioenergy Generation and Wastewater Treatment, Fuel Processing Technology, Vol. 138, 284-297.
  • [46] Ulusoy, I., 2012, Yakıt Hücresi Sisteminde Elektrokimyasal ve Mikrobiyolojik Yaklaşım İle Elektron Transfer Mekanizmasının İncelenmesi, Doktora Tezi, Gebze Yüksek Teknoloji Üniversitesi, Mühendislik ve Fen Bilimleri Enstitüsü, Gebze.
  • [47] Yates, M. D., 2014, Sustainable Resource Recovery and Energy Conversion Processes Using Microbial Electroihemical Technologies, Doctor of Philosophy, The Pennsylvania State University Department of Civil and Environmental Engineering.
  • [48] Do, M. H., Ngo, H. H., Gua, W. S., Liu, Y., Chang, S. W., Nguyen, N. N., Nghiem, L. D., Ni, B. J., 2018, Challenges in The Application of Microbial Fuel Cells To Wastewater Treatment and Energy Production: A Mini Review, Science of the Total Environment, Vol. 639, 910-920.
  • [49] Wei, J., Liang, P., Huang, X., 2011, Recent Progress in Electrodes For Microbial Fuel Cells, Bioresource Technology, Vol. 102, 9335-9344.
  • [50] Huggins, T., Wang, H., Kearns, J., Jenkins, P., Ren, Z. J., 2014, Biochar as a Sustainable Electrode Material For Electricity Production in Microbial Fuel Cells, Bioresource Technology, Vol. 157, 114-119.
  • [51] Erable, B., Etcheverry, L., Bergel, A., 2009, Increased Power From a Two-Chamber Microbial Fuel Cell With a Low-pH Air-Cathode Compartment, Electrochemistry Communications, Vol. 11, 619-622.
  • [52] Köroğlu, E. O., 2013, Mikrobiyal Yakıt Hücrelerinde Evsel Atıksulardan Elektrik Üretimi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • [53] Freguia, S., Rabaey, K., Yuan, Z., Keller, J., 2007, Non-Catalyzed Cathodic Oxygen Reduction at Graphite Granules in Microbial Fuel Cells, Science Direct, Vol. 53, 598-603.
  • [54] Tang, X., Guo, K. Li, H., Du, Z., 2010, Microfiltration Membrane Performance in Two-Chamber Microbial Fuel Cells, Journal of Biochemical Engineering, Vol. 52, 194-198.
  • [55] Leong, J. X., Wan Daud, W. R., Ghasemi, M., Liew, K. B. and Ismail, M. 2013. Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: a comprehensive review. Renewable and Sustainable Energy Reviews, 28, 575-587.
  • [56] Li, J., 2011, Application of Air-Cathode Microbial Fuel Cell to İndustrial Wastewater, Bachelor of Science in Water Supply and Drainage Engineering, Master of Science, Tianjin.
  • [57] Dai, J., 2012, Application of Microbial Fuel Cells in a Forested Wetland Environment, Clemson University Biosystems Engineering, 70.
  • [58] Uçar, D., Toprak, D., 2014, Mikrobiyal Yakıt Hücrelerinde Anot ve Katot Bölmelerinin Birbirinden Ayrılmasında Kullanılan Bazı Yöntemler, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, Vol. 14, 1-6.
  • [59] Rismandi-Yazdi, H., Carver, S. M., Christya, A.D., Tuovinen., 2008, Cathodic Limitations in Microbial Fuel Cells: An Overview, Journal of Power Sources, Vol. 180, 683-694.
  • [60] Palanisamy, G., Jung, H. Y., Sadhasivam, T., Kurkuri, M. D., Kim, S. C., Roh, S. H., 2019, A Comprehensive Review On Microbial Fuel Cell Technologies: Processes, Utilization, and Advanced Developments in Electrodes and Membranes, Journal of Cleaner Production, Vol. 221, 598-621.
  • [61] Özcan, E., 2013, Mikrobiyal Yakıt Hücrelerinde Membran ve İşletme Şartlarındaki Değişimin Güç Üretimine Etkisi, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü Çevre Mühendisliği Anabilim Dalı, 170, İstanbul.
  • [62] Sahu, O., 2019, Sustainable and Clean Treatment of İndustrial Wastewater With Microbial Fuel Cell, Results in Engineering, Vol. 4, 100053.
  • [63] Min, B., Kim, J. R., Oh, S. E., Regan, J. M., Logan, B. E., 2005, Electricity Generation From Swine Wastewater Using Microbial Fuel Cells, Water Research, Vol. 39, 4961-4968.
  • [64] Balku, Ş., 2004, Azot Giderimli Aktif Çamur Sisteminde Enerji Optimizasyonu, Doktora Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • [65] Gude, V. G., 2016, Wastewater treatment in microbial fuel cells e an overview. Journal of Cleaner Production, Vol. 122, 287-307.
  • [66] Mansoorian, H. J., Mahvi, A. H., Jafari, A. J., Khanjani, N., 2016, Evaluation of Dairy İndustry Wastewater Treatment and Simultaneous Bioelectricity Generation in Acatalyst-Less and Mediator-Less Membrane Microbial Fuel Cell’’, Journal of Saudi Chemical Society, Vol. 20, 88-100.
  • [67] Oon, Y. L., Ong, S. A., Ho, L. N., Wong, Y. S., Oon, Y. S., Lehl, H. K., Thung, W. E., 2015, Hybrid System Up-Flow Constructed Wetland İntegrated With Microbial Fuel Cell For Simultaneous Wastewater Treatment and Electricity Generation, Bioresource Technology, Vol. 186, 270-275.
  • [68] Hassan, M., Wei, H., Qiu, H., Su, Y., Jaafry, S. W., Zhan, L., Xie, B., 2018, Power Generation and Pollutants Removal From Landfill Leachate in Microbial Fuel Cell: Variation and İnfluence of Anodic Microbiomes, Bioresource Technology, Vol. 247, 434-442.
  • [69] Zhuang, L., Yuan, Y., Wang, Y., Zhou, S., 2012, Long-Term Evaluation of a 10-Liter Serpentine-Type Microbial Fuel Cell Stack Treating Brewery Wastewater, Bioresource Technology, Vol. 123, 406-412.
  • [70] Wang, X., Tian, Y., Liu, H., Zhao, X., Wu,, Q. 2019, Effects of İnfluent COD/TN Ratio On Nitrogen Removal in İntegrated Constructed Wetland–Microbial Fuel Cell Systems, Bioresource Technology, Vol. 271, 492-495.
  • [71] Kuşçuoğlu, S., 2008, K-Struvit Çöktürmesinin Uygulama Esaslarının Belirlenmesi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • [72] Zang, G. U., Sheng, G. P., Li, W. W., Tong, Z. H., Zeng, R. J., Shi, C., Yu, H. Q., 2012, Removal of Nutrients and Energy Production in Urine Purification Using Magnesium Ammonium Phosphate Precipitation and Microbial Fuel Cell Technique, Physical Chemistry Chemical Physics, Vol. 6, 1978-1984.
  • [73] Firdous, S., Jin, W., Shahid, N., Iqbal, A., Abbasi, U., Mahmood, Q., Ali, A., 2018, The Performance of Microbial Fuel Cells Treating Vegetable Oil İndustrial Wastewater, Environmental Technology & Innovation, Vol. 10, 143-151.
  • [74] Fazli, N., Ahmad Mutamim, N. S., Azwani Jafri, N. M., Mohd Ramli, N. A., 2018, Microbial Fuel Cell (MFC) in Treating Spent Caustic Wastewater: Varies İn Hydraulic Retention Time (HRT) and Mixed Liquor Suspended Solid (MLSS), Journal of Environmental Chemical Engineering, Vol. 6, 4339-4346.
  • [75] Liu, R., Gao, C., Zhao, Y. G., Wang, A., Lu, S., Wang, M., Maqbool, F., Huang, Q., 2012, Biological Treatment of Steroidal Drug İndustrial Effluent and Electricity Generation İn The Microbial Fuel Cells, Bioresource Technology, Vol. 123, 86-91.
  • [76] Abbasi, U., Jin, W., Pervez, A., Bhatti, Z. A., Tariq, M., Shaheen, S., Iqbal, A., Mahmood, Q., 2016, Anaerobic Microbial Fuel Cell Treating Combined İndustrial Wastewater: Correlation of Electricity Generation With Pollutants, Bioresource Technology, Vol. 200, 1-7.
  • [77] Cecconet, D., Molognoni, D., Callegari, A., Capodaglio, G., 2018, Agro-Food İndustry Wastewater Treatment With Microbial Fuel Cells: Energetic Recovery İssues, Science Direct, Vol. 43, 500-511.
  • [78] Wu, Y., Zhao, X., Jin, M., Li, Y., Li, S., Kong, F., Nan, J., Wang, A., 2018, Copper Removal and Microbial Community Analysis in Single-Chamber Microbial Fuel Cell, Bioresource Technology, Vol. 253, 272-277.
  • [79] Wen, Q., Wu, Y., Zhang, L., Sun, Q., 2010, Production of Electricity From The Treatment of Continuous Brewery Wastewater Using a Microbial Fuel Cell, Fuel, Vol. 89, 1381-1385.
  • [80] Kalathil, S., Patil, S. A., Pant, D., 2017, Microbial Fuel Cells: Electrode Materials, Elsevier, 2-9.
  • [81] Rodrigo, M. A., Canizares, P., Lobato, J., Paz, R., Sáez, C., Linares, J. J., 2007, Production of Electricity From The Treatment of Urban Waste Water Using a Microbial Fuel Cell, Journal of Power Sources, Vol. 169, 198-204.
  • [82] Estrada-Arriaga, E. B., Hernandez-Romano, J., García-Sánchez, L., Guillen Garcez, R. A., Bahena-Bahena, E. O., Guadarrama-Perez, O., Moeller Chavez, G. E., 2019, Domestic Wastewater Treatment and Power Generation in Continuous Flow Air-Cathode Stacked Microbial Fuel Cell: Effect of Series and Parallel Configuration, Journal of Environmental Management, Vol. 214, 232-241.
  • [83] Rahmani, A. R., Navidjouy, N., Rahimnejad, R., Nematollahi, D., Leili, M., Samarghandi, M. R., Alizadeh, S., 2020, Application of The Eco-Friendly Bio-Anode For Ammonium Removal and Power Generation From Wastewater in Bio-Electrochemical Systems’’, Journal of Cleaner Production, Vol. 243, 118589.
  • [84] Yang, Z., Peia, H., Hou, Q., Jian, l., Zhang, L., Nie, C., 2018, ‘‘Algal Biofilm-Assisted Microbial Fuel Cell to Enhance Domestic Wastewater Treatment: Nutrient, Organics Removal and Bioenergy Production’’, Chemical Engineering Journal, Vol. 332, 277-285.
  • [85] Ghasemi, M., Ahmad, A., Jafary, T., Azad, A. K., Kakooei, S., Wan Daud, W. R., Sedighi, M., 2017, Assessment of İmmobilized Cell Reactor and Microbial Fuel Cell For Simultaneous Cheese Whey Treatment and Lactic Acid/Electricity Production, Uluslararası Hidrojen Enerjisi Dergisi, Vol. 42 (14), 9107-9115.
  • [86] Callegari, A., Cecconet, D., Molognoni, D., Capodaglio, A. G., 2018, Sustainable Processing of Dairy Wastewater: Long-Term Pilotapplication of a Bioelectrochemical System, Journal of Cleaner Production, Vol. 189, 563-569.
  • [87] Sciarria, T. P., Merlino, G., Scaglia, B., D’Fpifanio, A., Mecheri, B., Borin, S., Licoccia, S., Adani, F., 2015, Electricity Generation Using White and Red Wine Lees in Air Cathode Microbial Fuel Cells, Journal of Power Sources, Vol. 274, 393-399.
  • [88] Raychaudhuri, A., Behera, M., 2020, Comparative Evaluation of Methanogenesis Suppression Methods in Microbial Fuel Cell During Rice Mill Wastewater Treatment, Environmental Technology & Innovation, Vol. 17, 100509.