TI6AL4V MALZEMESİNİN TORNALAMA İŞLEMİNDE ÖZGÜL KESME ENERJİSİ VE YÜZEY PÜRÜZLÜĞÜNÜN İNCELENMESİ VE YAPAY SİNİR AĞLARI TEMELLİ TAHMİN MODELİ GELİŞTİRİLMESİ

Havacılık ve medikal sanayii gibi isterleri yüksek olan sektörlerde kullanılan parçaların imalatı genellikle yüksek hassasiyete sahip talaşlı imalat yöntemleri ile yapılmakta olup, bu işlemler sırasında yüksek teknoloji ürünü takım tezgahları kullanılmaktadır. Diğer yandan, son on yılda, önemli bir maliyet girdisi olan ve çevre etkisi bulunan enerji tüketimini, talaşlı imalat sırasında en aza indirme amaçlı çalışmalar yoğunlaşmıştır. Dolayısıyla, düşük enerji tüketimi ile yüksek kaliteli iş parçalarının üretimi, giderek önem kazanmaktadır. Tornalama işlemi, talaş kaldırma işlemleri arasında en fazla tercih edilen işlemlerden birisidir. Günümüzde, Ti6Al4V malzemesi, sağladığı mekanik ve ısıl avantajlardan dolayı, hem havacılık hem de medikal sanayiinde yaygın olarak kullanılmakta ve yüksek hassasiyetli torna tezgahlarında işlenmektedir. Bu çalışmada, malzemesi Ti6Al4V olan iş parçasının yüzey pürüzlülüğü (Ra) ve bu iş parçasının üretimi sırasında elde edilen özgül kesme enerjisi (ÖKE) incelenmiştir. İşlem girdi parametreleri olarak; kesme derinliği (ap), kesme hızı (Vc) ve ilerleme (f) belirlenmiştir. Belirlenen çıktı parametrelerinin tahmini için Yanıt Yüzey Metodu (YYM) ve Yapay Sinir Ağları (YSA) kullanılmıştır. YSA ve YYM modellerinde kullanılan veriler Box-Behnken deney tasarımı ile elde edilmiştir. Bunun yanı sıra girdi parametrelerinin etkilerini incelemek adına, Merkezi Kompozit Deney Tasarımı (MKT) kullanılarak elde edilen sonuçlar üzerinden Varyans Analizi yapılmıştır. Çalışmalar sonucunda minimum yüzey pürüzlülüğü elde etmek için kesme derinliği 0,2 mm, ilerleme 0,0637 mm/dev ve kesme hızı 36 m/dak olarak belirlenmiştir. Aynı zamanda minimum özgül kesme enerjisi için gerekli girdi parametreleri; ap= 0,53 mm, f= 0,0963 mm/dev ve Vc= 44 mm/dak’dır. YSA modeli ile geliştirilen tahmin modelinin YYM tahmin modeline göre daha iyi sonuçlar ortaya koyduğu gözlemlenmiştir.

___

  • [1] Gutowski, T., Dahmus, J., Thiriez, A., (2006). Electrical Energy Requirements for Manufacturing Processes. In: The 13th CIRP International Conference on Life Cycle Engineering, Leuven, Belgium, 1(2).
  • [2] Bilga, P.S., Singh, S., Kumar, R., (2016). Optimization of Energy Consumption Response Parameters for Turning Operation Using Taguchi Method. Journal of Cleaner Production, 137, 1406-1417.
  • [3] Kara, S., Li, W., (2011). Unit Process Energy Consumption Models for Material Removal Processes. CIRP Annals - Manufacturing Technology, 60, 37–40.
  • [4] Altıntaş, R.S., Kahya, M., Ünver, H.Ö., (2016). Modelling and optimization of energy consumption for feature based milling. International Journal of Advance Manufacturing Technology, 86, 3345-3363.
  • [5] Mativenga, P.T., Rajemi, M.F. (2011). Calculation of optimum cutting parameters based on minimum energy footprint. CIRP Annals – Manufacturing Technology, 60, 149-152.
  • [6] Newman, S.T., Nassehi, A., Imani-Asrai, R., Dhokia, V., (2012). Energy efficient process planning for CNC machining. CIRP Journal of Manufacturing Science and Technology, 5,127-136.
  • [7] Wang, Q., Lie, F., Congbo, Li., (2013). An integrated method for assessing the energyefficiency of machining workshop. Journal of Cleaner Production, 52, 122-133.
  • [8] Uluer, M.U., Unver, H.O., Gok, G., Fescioğlu-Ünver, N., Kılıç, S.E., (2016). A framework for energy reduction in manufacturing process chains (E-MPC) and a case study from the Turkish household appliance industry. Journal of Cleaner Production, 112, 3342-3360.
  • [9] Herrmann, C., Thiede, S., Kara, S., Hesselbach, J., (2011). Energy oriented simulation of manufacturing systems – Concept and application. CIRP Annals – Manufacturing Technology, 60, 45-48.
  • [10] Moradnazhad, M., Unver, H.Ö., (2015). Energy efficiency of machining operations: A review. Journal of Engineering manufacture, 1-19.