S. cerevisiae ile REMAZOL SARI (RR) GİDERİMİNE YAPAY SİNİR AĞI (YSA) YAKLAŞIMI

Bu çalışmada kesikli sistemde S. cerevisiae ile Remazol Sarı (RR) giderimine Yapay Sinir Ağı (YSA) yaklaşımı uygulanmıştır. Bu kapsamda yapay sinir ağı için sistem girdi verisi olarak pH, başlangıç boya konsantrasyonu ve başlangıç biyosorbent konsantrasyonu tanımlanırken çıktı katmanında % boya giderim değeri tahmin edilmiştir.  Yapay sinir ağı (YSA) eğitimi Levenberg–Marquardt ileri besleme algoritması ile yapılmış olup deneysel veriler %60 eğitim, %20 validasyon ve %20 test olarak bölünmüştür. Maksimum devir (epoch) değeri 12000 iterasyon olarak belirlenmiştir.  Sisteme ait R2 değerleri eğitim için %98, validasyon için %96 ve tüm biyosorpsiyon sistemi için %98 olarak belirlenmiştir. Çalışmanın devamında biyosorpsiyon sistemi modellenmesi kapsamında sistem değişkenleri olan pH, başlangıç boya ve biyosorbent konsantrasyonları ile sıcaklık için ayrı ayrı modelleme çalışmaları gerçekleştirilmiştir. Çalışma sonucunda deneysel ve model tahmini % giderim değerleri karşılaştırıldığında, YSA ile sistemin iyi bir şekilde modellendiği ve modelin iyi bir tahmin yeteneğine sahip olduğu görülmüştür. 

___

  • 1. Abdurrahman, F.B., Akter, M., Abedin, Z. (2013) Dyes Removal From Textile Wastewater Using Orange Peels, International Journal of Scientific & Technology Research, 2-9.
  • 2. Amouei A., Amooey A.A., Asgharzadeh F. (2013) A study of cadmium removal from aqueous solutions by sunflower powders and its modeling using artificial neural network, Iranian Journal of Health Sciences., 1(3): 28-34. doi: 10.18869/acadpub.jhs.1.3.28
  • 3. Argun, Y.A., Karacalı A., Çalışır U., Kılınç, N., İrak H. (2017) Biosorption method and biosorbents for dye removal from industrial wastewater: A Review, International Journal of Advanced Research, 5(8), 707-714. doi: 10.21474/IJAR01/5110
  • 4. Arı A., Berberler M.E. (2017) Yapay Sinir Ağları ile Tahmin ve Sınıflandırma Problemlerinin Çözümü İçin Arayüz Tasarımı, Acta Infologica, 1(2).
  • 5. Asgher, M. (2012) Biosorption of Reactive Dyes: A Review, Water, Air, & Soil Pollution, 223(5), 2417–2435. doi: 10.1007/s11270-011-1034-z
  • 6. Aslay F., Özen Ü. (2013) Meteorolojik Parametreler Kullanılarak Yapay Sinir Ağları ile Toprak Sıcaklığının Tahmini, Politeknik Dergisi, 16(4), 139-145. doi: 10.2339/2013.16.4, 139-145
  • 7. Ataseven B. (2013) Yapay Sinir Ağları ile Öngörü Modellemesi, Öneri Dergisi, 10(39), 101-105.
  • 8. Bingöl D., Kılıç E., Hercan M. (2016) Bakır biyosorpsiyon işlemine Yapay Sinir Ağı (ANN) yaklaşımı, Sakarya Üniversitesi Fen Bilimleri Üniversitesi Dergisi, 20(3), 433-440. doi: 10.16984/saufenbilder.25723.
  • 9. Chu K.H. (2003) Prediction of two-metal biosorption equilibria using a neural network, The European Journal of Mineral Processing and Environmental Protection, 3(1), 119-127.
  • 10. Çavuşlu M.A., Becerikli Y., Karakuzu C. (2012) Levenberg-Marquardt Algoritması ile YSA Eğitiminin Donanımsal Gerçeklenmesi, Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi, 5(1).
  • 11. Çoruh S., Kılıç E., Geyikci F. (2014) Prediction of adsorption efficiency for the removal malachite green and acid blue 161 dyes by waste marble dust using ANN, Global Nest Journal, 16(4):676-689. doi: 10.30955/gnj.001366
  • 12. Dalkılınç, M. (2015). Düşük Maliyetli Biyosorbent ile Sabit Yataklı Kolonda Reaktif Mavi 21 ve Reaktif Kırmızı 250 Biyar Maddelerinin Giderimi ve Atılım Eğrilerinin Modellenmesi, Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum.
  • 13. Donut N., Cavas L. (2017) Artificial Neural Network Modeling of Tetracycline Biosorption by Pre-treated Posidonia oceanica, Turkish Journal of Fisheries and Aquatic Sciences 17, 1317-1333. doi: 10.4194/1303-2712-v17_6_50
  • 14. Erdem F., Tosun A., Ergun M. (2016) S. cerevisiae ile Remazol Sarı (RR) boyasının kesikli sistemde biyosorpsiyonu, Journal of the Faculty of Engineering and Architecture of Gazi University, 31(4), 971-978. doi: 10.17341/gazimmfd.278452
  • 15. Faisal A., Nassir Z.S. (2016) Modelling the removal of Cadmium ions from aqueous solutions onto olive pips using neural network technique, Al-Khwarizmi Engineering Journal, 12(3), 1-9. doi: 10.1016/j.procbio.2004.11.007
  • 16. Fiona N.(2001) Neural Networks algorithms and applications, Neil’s Brock Business College.
  • 17. Garza-González M.T., Alcalá-Rodríguez M.M., Pérez-Elizond R., Cerino-Córdova F.J. Garcia-Reyes R.B., Loredo-Medrano J.A., Soto-Regalado, E. (2011) Artificial neural network for predicting biosorption of methylene blue by Spirulina sp., Water scence and technology, 75(5), 977-983. doi: 10.2166/wst.2011.279
  • 18. Karaman Ş. Deniz F. (2014) Pinus brutia Ten. (Kızılçam) Kozalak ve Yaprak Biyomasının Boya Biyosorpsiyon/Desorpsiyon Potansiyeli, Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 17(3), 19-25. doi: 10.18016/ksujns.19406
  • 19. Kardam A. Raj K.R., Arora J.K., Srivastava S. (2014) Simulation and Optimization of Artificial Neural Network Modeling for Prediction of Sorption Efficiency of Nanocellulose Fibers for Removal of Cd (II) Ions from Aqueous System, Engineering and Physical Sciences, 11(6): 497‐508. doi: 10.2004/wjst.v11i6.625
  • 20. Krose B., Smagt P. (1998) An introduction to Neural Networks, 8. Baskı, Amsterdam.
  • 21. Nasrullaha A., Bhata A.H., Isab M.H., Danishc M., Naeemd A., Muhammade N., Khanb T. (2017) Efficient removal of methylene blue dye using mangosteen peel waste: kinetics, isotherms and artificial neural network (ANN) modeling, Desalination and Water Treatment, 86, 191-202. doi: 10.5004/dwt.2017.21295
  • 22. Özdemir H. (2013) Yapay Sinir Ağları ve Dokuma Teknolojisinde Kullanımı, Tekstil Teknolojileri Elektronik Dergisi, 7(1), 51-68.
  • 23. Saibaba K.V.N., King P. (2012) Application of artificial neural networks and response surface methodology for dye removal using a novel adsorbent chemical technology. Chemical Technology: An Indian Journal, 7(1), 9-15. doi: 10.1177/0263617416675625
  • 24. Yaseen D. A. , Scholz M. (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review, International Journal of Environmental Science and Technology, 16(2), 1193–1226. doi: 10.1007/s13762-018-2130-z
  • 25. Yu L., Wang S. Keung Lai K. (2007) Basic Learning Principles of Artificial Neural Networks. In: Foreign-Exchange-Rate Forecasting With Artificial Neural Networks. International Series in Operations Research & Management Science, 107, Springer, Boston. doi: 10.1007/978-0-387-71720-3.
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: 3
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

FARKLI MALZEME KOMBİNASYONLARINA SAHİP RADYAL BİLYALI RULMANLARIN TOPLAM LOKAL EZİLME MİKTARLARI VE BOYUTSUZ FİLM PARAMETRELERİNİN KARŞILAŞTIRILMASI

Gültekin KARADERE, Cenk TOSUN

Çörekotu Yağı İçeren Poliüretan Nanolifli Yüzeylerin Morfolojik Özellikleri Üzerine Bazı Proses Parametrelerinin Etkilerinin Araştırılması

Cansu ARAS, Şebnem DÜZYER GEBİZLİ, Elif TÜMAY ÖZER, Emine Esra KARACA

İYİLEŞTİRİLMİŞ AKIM GERİ BESLEMELİ İŞLEMSEL KUVVETLENDİRİCİ İLE SİNUSOİDAL OSİLATÖR TASARIMI

Merih YILDIZ

DOĞAL VE SENTETİK LİF ESASLI KOMPAKT İPLİKLERDEN ÜRETİLEN GÖMLEKLİK KUMAŞLARIN BAZI MEKANİK VE HAVA GEÇİRGENLİĞİ ÖZELLİKLERİNİN İNCELENMESİ

Erhan Kenan ÇEVEN, Gizem KARAKAN GÜNAYDIN

GÜÇ TUTUŞUR POLİPROPİLEN POLİMERİ VE LİF UYGULAMALARINDA SON GELİŞMELER VE GELECEK BEKLENTİLERİ

Hüseyin AVCI, Mustafa Erdem ÜREYEN, Ali Murat KILIÇ, Adem Erdal SAĞLAM, Ali Demir YONGUÇ

ÜÇÜNCÜ DERECEDEN YENİ BİR QUADRATURE OSİLATÖR TASARIMI

İhsan KARACAN, Ahmet GÖKÇEN

1940 NM FİBER LAZER KAYNAĞININ KARACİĞER DOKUSUNDAKİ ISIL HASARININ YAPAY SİNİR AĞLARI İLE TAHMİNİ

Fikret YILDIZ

Kuru Tip Transformatörlerin Dış Ortamlarda Kullanılabilmesi İçin Deneysel Ve Simülasyon Ile Termal Analizine Yeni Yaklaşım

Murat TÖREN, Mehmet Mesut ÇELEBİ

INVESTIGATION OF SOME MECHANICAL AND AIR PERMEABILITY PROPERTIES OF SHIRTING FABRICS PRODUCED FROM COMPACT YARNS MADE OF NATURAL AND SYNTHETIC FIBRES

Erhan Kenan ÇEVEN, Gizem KARAKAN GÜNAYDIN

ZAMAN PENCERELİ BÖLÜNMÜŞ-DAĞITIMLI ARAÇ ROTALAMA İLE AFET SONRASI YARDIM MALZEMESİ DAĞITIMI PLANLAMASI

Merve KÖSE KÜÇÜK, Fatih ÇAVDUR