Hardox 400 Çeliği için Hidrolik Abkant Preste Bükme Parametrelerinin Belirlenmesi

Bu çalışmada, Hardox 400 çeliğinin levha kalınlığı, levha uzunluğu ve mekanik özelliklerine bağlı olarak bükme kuvvetlerini ve zımba yer değiştirmelerini belirlemek için kullanılan özel bir hidrolik abkant pres tabanlı test düzeneği (HPBTS) tasarlanmış ve üretilmiştir. Kurulum, şekillendirme sırasında bükme açısının değişimini algılamak için bir görüntü işleme sistemi ile donatılmıştır. Bükme testleri öncesinde çekme testleri yapılmış ve tespit edilen mekanik özellikler imalatçıların bildirdiği özelliklerle karşılaştırılmıştır. Mekanik özellikler arasındaki farkın bükme parametreleri üzerindeki etkisi araştırılmıştır. Bükme testleri için havada büküm tekniği kullanılmıştır. Deneyler, iki farklı üreticiden temin edilen yassı malzemeler kullanılarak farklı levha kalınlıkları, levha uzunlukları, bükme açıları, bükme hızları ve kanal açıklıkları ile gerçekleştirilmiştir. Bu parametrelerin bükme kuvveti, yer değiştirme ve geri yaylanma açısına etkileri ortaya çıkarılmıştır. Hardox 400 çeliğinin mekanik özelliklerinin üreticiye göre farklılık gösterdiği belirlenmiştir. Ölçülen mekanik özellikler ile imalatçılardan elde edilenler arasındaki farkların, bükme özellikleri üzerinde doğrudan bir etkiye sahip olduğu anlaşılmıştır.

DETERMINATION OF PRESS BRAKE BENDING PARAMETERS FOR HARDOX 400 STEEL

In the present study, a specific hydraulic press brake based test setup (HPBTS) was designed and manufactured which was used to determine the bending forces and the punch displacements of Hardox 400 steel depending on the plate thickness, plate length and mechanical properties. The setup was equipped with an image processing system to detect the change of the bending angle during forming. Prior to bending tests, tensile tests were carried out and the identified mechanical properties were compared with the ones reported by the manufacturers. The effect of the difference between the mechanical properties on the bending parameters was investigated. Air bending technique was used for bending tests. Experiments were carried out with varying plate thicknesses, plate lengths, bending angles, forming speeds and channel openings using flat materials supplied from two different manufacturers. The effect of these parameters on bending force, displacement and springback angle was revealed. It was shown that the mechanical properties of Hardox 400 steel vary according to the manufacturer. The difference between the measured mechanical properties and the ones obtained from the manufacturers had a direct influence on the bending properties.

___

  • 1. Adnan, M.F., Abdullah, A.B. and Samad, Z., (2017) Springback behavior of AA6061 with non-uniform thickness section using Taguchi Method, The International Journal of Advanced Manufacturing Technology, 89(5-8,) 2041–2052, doi:10.1007/s00170-016-9221-0
  • 2. Asnafi, N., (2000) Springback and fracture in v-die air bending of thick stainless steel sheets, Materials and Design, 21(3), 217-236, doi:10.1016/S0261-3069(99)00051-5
  • 3. ASTM E8/E8M − 16a, (2016) Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, doi:10.1520/E0008_E0008M-16A, www.astm.org.
  • 4. Aydemir, F. (2017) Determination of the bending parameters for hydraulic press brakes,MScThesis,Uludağ University, Institute of Science, Mechanical Engineering Department, (in Turkish).
  • 5. Canteli, J.A., Cantero, J.L. and Miguelez, M.H., (2008) Experimental identification of a thermo-mechanical model for air bending, Journal of Materials Processing Technology, 203(1),267-276, doi:10.1016/j.jmatprotec.2007.09.048
  • 6. Chan, W.M., Chew, H.I., Lee, H.P. and Cheok, B.T.,(2004) Finite element analysis of spring-back of V-bending sheet metal forming processes, Journal of Materials Processing Technology, 148(1), 15-24, doi:10.1016/j.jmatprotec.2003.11.038
  • 7. Coelho, P.G., Faria L.O. and Cardoso J.B., (2005) Structural analysis and optimisation of press brakes, International Journal of Machine Tools & Manufacture, 45(12), 1451-1460, doi:10.1016/j.ijmachtools.2005.01.030
  • 8. Duflou, J.R., Vancza, J. and Aerens, R., (2005) Computer aided process planning for sheet metal bending: A state of the art, Computers in Industry, 56(7), 747-771, doi:10.1016/j.compind.2005.04.001
  • 9. Duflou, J.R. and Aerens, R., (2006) Force Reduction in Bending of Thick Steel Plates by Localized Preheating, CIRP Annals, Manufacturing Technology, 55)(1), 237-240, doi:10.1016/S0007-8506(07)60406-5
  • 10. Elkins, K.L. and Sturges, R.H., (1999) Non-Iterative Control of Small-Radius Bend Angle, Journal of Manufacturing Processes,1(1), 18-30, doi:10.1016/S1526-6125(99)70002-2
  • 11. Fei, D. and Hodgson P., (2006) Experimental and numerical studies of springback in air v-bending process for cold rolled TRIP steels, Nuclear Engineering and Design, 236(18), 1847-1851, doi:10.1016/j.nucengdes.2006.01.016
  • 12. Gupta, S.K., Bourne, D.A., Kim, K.H. and Krishnan, S.S., (1998) Automated Process Planning for Sheet Metal Bending Operations, Journal of Manufacturing Systems, 17(5), 338-361, doi:10.1016/S0278-6125(98)80002-2
  • 13. Marcondes, P.V.P., Dos Santos, R.A. and Haus, S.A., (2016) The coining force influence on springback in TRIP800 steel V and L bending processes, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(2), 455-463, doi:10.1007/s40430-015-0467-5
  • 14. Mentink, R.J., Lutters, D., Streppel, A.H. and Kals, H.J.J., (2003) Determining material properties of sheet metal on a press brake, Journal of Materials Processing Technology, 141(1), 143-154, doi:10.1016/S0924-0136(03)00274-7
  • 15. Mori, K., Akita, K. and Abe, Y., (2007) Springbackbehavior in bending of ultra-high-strength steel sheets using CNC servo press, International Journal of Machine Tools & Manufacture, 47 (2), 321-325, doi:10.1016/j.ijmachtools.2006.03.013
  • 16. Ona, H. and Watari, H., (1998) Elimination of the longitudinal curvature of a product formed by a press brake, Journal of Materials Processing Technology, 79(1), 236-241, doi:10.1016/S0924-0136(98)00018-1
  • 17. Santos, J.P., Oliveira, M., Almeida, F.G., Pereira, J.P. and Reis, A., (2011) Improving the environmental performance of machine-tools: influence of technology and throughput on the electrical energy consumption of a press-brake, Journal of Cleaner Production, 19(4), 356-364, doi:10.1016/j.jclepro.2010.10.009
  • 18. Saric, E., Mehmedović, M. and Butković, S., (2016) Analysis of springback in air bending process, Journal for Technology of Plasticity, 41(2), 35-44
  • 19. Singh, U.P., Maiti, S.K., Date, P.P. and Narasimhan, K., (2004) Numerical simulation of the influence of air bending tool geometry on product quality, Journal of Materials Processing Technology, 145(3), 269-275, doi:10.1016/S0924-0136(03)00443-6
  • 20. Thipprakmas, S., (2010) Finite element analysis of punch height effect on V-bending angle, Materials and Design, 31(3), 1593-1598, doi:10.1016/j.matdes.2009.09.019
  • 21. Uckland J.L. Duncan, S.J. Hu Ann Arbor, (2002) Mechanics of Sheet Metal Forming, Butterworth-Heinemann An imprint of Elsevier Science Linacre House, Jordan Hill, Oxford OX2 8DP 225 Wildwood Avenue, Woburn, MA 01801-2041
  • 22. Wang, J., Verma, S., Alexander, R. and Gau, J.T., (2008) Springback control of sheet metal air bending process, Journal of Manufacturing Processes,10(1), 21-27, doi:10.1016/j.manpro.2007.09.001
  • 23. 912en Strenx, Hardox and Docol - Bending of high strength steel-V3-2015-Confetti-Österbergs, SSAB (2015), SE-613 80 Oxelösund Sweden