MICROWAVE ENERGY-ASSISTED FABRICATION OF HIERARCHICALLY STRUCTURED CARBON NANOTUBE/CARBON FIBER COMPOSITES

Zahmetsiz, sade ve basit buna rağmen oldukça verimli, hesaplı ve kısa süreli (30 s) mikrodalga enerjisi tabanlı bir ısıtma işlemi kullanılarak; yüzeyini çok duvarlı karbon nanotüplerin ormanımsı bir tabaka halinde kapladığı karbon liflerinden oluşan hiyerarşik yapıdaki kompozitler ortam koşullarında tek adımda üretilmiştir. Üretilen bu kompozit yapıların morfolojik özellikleri, taramalı ve geçirimli elektron mikroskopları kullanılarak ve elementel analiz yardımıyla detaylıca test edilmiştir. Hem elde edilen kompozit malzeme özelliklerinin test sonuçları hem de bahsedilen bu işlemin çok yönlü ve kolaylıkla kontrol edilebilir sistematiği, yöntemin, yeni nesil ileri mühendislik uygulamalarında etkin olarak kullanılabilecek bu tip hiyerarşik yapıdaki kompozitlerin üretilmesindeki umut vaat eden başarısını kuvvetli bir biçimde desteklemektedir

Mikrodalga Enerjisi Yardımıyla Hiyerarşik Yapılı Karbon Nanotüp/Karbon Lifi Kompozitlerinin Üretilmes

Through a facile, simple, yet efficient, affordable and ultrafast (30 s) microwave (MW) energy heating process, hierarchical composites made up of carbon fibers (CFs) decorated with multi-walled carbon nanotube (MWCNT) forest were produced at ambient conditions in one-step. Morphological features of the as-produced composites were characterized in details by using scanning and transmission electron microscopy (SEM, TEM) and the elemental analysis (EDX) techniques. Both the composite material characterization results and the versatile and easily controllable nature of the above mentioned process strongly support its promising success for the fabrication of such hierarchical composites that could be effectively used for the next generation advanced engineering applications

___

  • Chand, S. (2000) Review carbon fibers for composites, Journal of Materials Science, 35(6), 1303-1313. DOI: 10.1023/A:1004780301489
  • Chen, H., Roy, A., Baek, J. B., Zhu, L., Qu, J., Dai, L. (2010) Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications, Materials Science and Engineering R, 70, 63-91. DOI: 10.1016/j.mser.2010.06.003
  • Delamar, M., Desarmot, G., Fagebaume, O., Hitmi, R., Pinsonc, J., Saveant, J. M. (1997) Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites, Carbon, 35(6), 801-807. DOI: 10.1016/S0008- 6223(97)00010-9
  • Liu, Z., Wang, J., Kushvaha, V., Poyraz, S., Tippur, H., Park, S., Kim, M., Liu, Y., Bar, J., Chen, H., Zhang, X. (2011) Poptube approach for ultrafast nanotube growth, Chemical Communications, 47, 9912-9914. DOI: 10.1039/c1cc13359d
  • Poyraz, S., Liu, Z., Liu, Y., Zhang, X. (2013) Devulcanization of scrap ground tire rubber and successive carbon nanotube growth by microwave irradiation, Current Organic Chemistry, 17, 2243-2248. DOI: 10.2174/13852728113179990049
  • Poyraz, S., Zhang, L., Schroder, A., Zhang, X. (2015) Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials, ACS Applied Materials and Interfaces, 7, 22469-22477. DOI: 10.1021/acsami.5b06484
  • Samsur, R., Rangari, V. K., Jeelani, S., Zhang, L., Cheng, Z. Y. (2013) Fabrication of carbon nanotubes grown woven carbon fiber/epoxy composites and their electrical and mechanical properties, Journal of Applied Physics, 113(21), 214903-214908. DOI: 10.1063/1.4808105
  • Thostenson, E., Ren, Z., Chou, T. (2001) Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, 61(13), 1899-1912. DOI: 10.1063/1.1466880
  • Thostenson, E. T., Li, W. Z., Wang, D. Z., Ren, Z. F., Chou, T. W. (2002) Carbon nanotube/carbon fiber hybrid multiscale composites, Journal of Applied Physics, 91(9), 6034-6037. DOI: 10.1016/S0266-3538(01)00094-X
  • Xie, H., Poyraz, S., Thu, M., Liu, Y., Snyder, E. Y., Smith, J. W., Zhang, X. (2014) Microwave-assisted fabrication of carbon nanotubes decorated polymeric nano-medical platforms for simultaneous drug delivery and magnetic resonance imaging, RSC Advances, 4, 5649-5662. DOI: 10.1039/c3ra45913f
  • Xu, B., Wang, X., Lu, Y. (2006) Surface modification of polyacrylonitrile-based carbon fiber and its interaction with imide, Applied Surface Science, 253(5), 2695-2701. DOI: 10.1016/j.apsusc.2006.05.044
  • Yu, B., Jiang, Z., Tang, X. Z., Yue, C. Y., Yang, J. (2014) Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating, Composites Science and Technology, 99, 131-140. DOI: 10.1016/j.compscitech.2014.05.021
  • Yuan, H., Wang, C., Zhang, S., Lin, X. (2012) Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite, Applied Surface Science, 259, 288-293. DOI: 10.1016/j.apsusc.2012.07.034
  • Zhao, Z. G., Ci, L. J., Cheng, H. M., Bai, J. B. (2005) The growth of multi-walled carbon nanotubes with different morphologies on carbon fibers, Carbon, 43, 651-673. DOI: 10.1016/j.carbon.2004.10.013