Kendiliğinden Yerleşen Betonla Yapılan Kolon-Kiriş Birleşimlerinde Donatı Oranı Etkisinin Değerlendirilmesi

Yüksek süneklik gerektiren kolon-kiriş düğüm noktaları gibi korunmasız bölgelerde, beklenmedik yüklemeler altında, sünek betona ihtiyaç duyulmaktadır. Alternatif olarak, kendiliğinden yerleşen beton (KYB), deprem etkisi altinda elemanların daha sünek davranış gösteren bir yapıya ulaşmak için son yıllarda büyük ilgi yaratan bir beton türüdür. Bu tipteki betonların belirgin özellikleri yüksek performans, segregasyona karşı yüksek direnç ve yerleşme için iç veya dış vibrasyona ihtiyaç duyulmamasıdır. Deprem bölgelerinde, süneklik, özellikle eğilmeye maruz kalan yapısal bağlantı noktalarının performansında önemli bir faktördür ve bu davranış plastik yerdeğiştirme kapasitesindeki artıştan kaynaklanmaktadır. Bu makalede, KYB kullanılan ve farklı donatı oranlarındaki dört adet kolon-kiriş düğüm noktasının yük-yerdeğiştirme davranışının deneysel ve teorik analizleri açıklanmaktadır. Bu araştırmanın teorik aşamasında, üç boyutlu sonlu elemanlar metodu (SEM), Seismostruct doğrusal olmayan yazılımı kullanılarak, deneysel-nümerik sonuçlar karşılaştırılmış ve yük-yerdeğiştirme diyagramları çizdirilmiştir. Deneysel sonuçlar ve doğrusal olmayan SEM modeli, kolon-kiriş düğüm noktalarında işlenebilir beton olarak KYB’un kullanımının, betonarme yapılarda süneklik ve enerji yutma kapasitesi bakımından tatmin edici bir performansa sahip olduğunu göstermiştir.

EVALUATION OF REINFORCING BARS RATIO EFFECTS ON SCC BEAM-COLUMN JOINT PERFORMANCE

Beam-column joints require a high ductility during the unexpected loadings that necessitate the need for ductile concrete in such unprotected locations. Alternatively, self-compacting concrete (SCC) is a sort of concrete which has generated tremendous interest throughout the last decades in order to reach a ductile structural elements during the seismic actions. Specific properties of this type of concrete include high performance, high resistance against segregation and needless to internal or external vibration in order to compact. In the seismic regions, ductility is one of the most important factors in the design of reinforced concrete (RC) members, especially structural joints flexural performance; it is due to the enhance in the capability of plastic deformability. This paper describes load-displacement behavior of experimental and theoretical analysis of four SCC beam-column joints with different percentage of the ratio of the reinforcing bars (ρ). In the theoretical phase of this investigation three-dimensional nonlinear finite element method (FEM) model i.e., Seismostruct was used and the load-deflection diagrams were plotted to compare the test results with the numerical output. The experimental results and nonlinear FEM modeling indicate that using SCC as a workable concrete in beam-column joints of reinforced concrete structures has satisfactory performance in terms of ductility and energy dissipations.

___

  • Ashtiani, M. S., Dhakal, R. P., & Scott, A. N. (2013). Post-yield bond behaviour of deformed bars in high-strength self-compacting concrete. Construction and Building Materials, 44, 236-248. doi: 10.1016/j.conbuildmat.2013.02.072
  • Ashtiani, M. S., Dhakal, R. P., & Scott, A. N. (2014). Seismic performance of high-strength self-compacting concrete in reinforced concrete beam-column joints. Journal of Structural Engineering, 140(5), 04014002. doi: 10.1061/(asce)st.1943-541x.0000973
  • Bedirhanoglu, I., Ilki, A., Pujol, S., & Kumbasar, N. (2010). Seismic behavior of joints built with plain bars and low-strength concrete. ACI Struct. J, 107(3), 300-310. doi: 10.1061/(asce)cc.1943-5614.0000156
  • Dashti, F., Dhakal, R. P., & Pampanin, S. (2017). Numerical modeling of rectangular reinforced concrete structural walls. Journal of Structural Engineering, 143(6), 04017031. doi: 10.1061/(ASCE)ST.1943-541X.0001729
  • De Almeida Filho, F. M., Mounir, K., & El Debs, A. L. H. (2008). Bond-slip behavior of self-compacting concrete and vibrated concrete using pull-out and beam tests. Materials and Structures, 41(6), 1073-1089. doi: 10.1617/s11527-007-9307-0
  • Desnerck, P., De Schutter, G., & Taerwe, L. (2010). Bond behaviour of reinforcing bars in self-compacting concrete: experimental determination by using beam tests. Materials and Structures, 43(1), 53-62. doi: 10.1617/s11527-010-9596-6
  • Dhakal, R., & Scott, A. C. N. (2018). Cyclic response analysis of high-strength selfcompacting concrete beam-column joints: Numerical modeling and experimental validation. Bulletin of the New Zealand Society for Earthquake Engineering volume 51 issue 1 on pages 23 to 33. doi: 10.5459/bnzsee.51.1.23-33
  • Ghatte, H.F, Comert, M., Demir, C., Akbaba, M., & Ilki, A. (2018). Seismic Retrofit of Full-Scale Substandard Extended Rectangular RC Columns through CFRP Jacketing: Test Results and Design Recommendations. Journal of Composites for Construction, 23(1), 04018071. doi: 10.1061/(ASCE)CC.1943-5614.0000907
  • Hassan, A. A. A., Hossain, K. M. A., & Lachemi, M. (2008). Behavior of full-scale selfconsolidating concrete beams in shear. Cement and Concrete Composites, 30(7), 588-596. doi: 10.1016/j.cemconcomp.2008.03.005
  • Kim, Y. H., Hueste, M. B. D., Trejo, D., & Cline, D. B. (2010). Shear characteristics and design for high-strength self-consolidating concrete. Journal of structural engineering, 136(8), 989-1000. doi: 10.1061/(ASCE)ST.1943-541X.0000194
  • Lachemi, M., Hossain, K. M., & Lambros, V. (2005). Shear resistance of self-consolidating concrete beams experimental investigations. Canadian journal of civil engineering, 32(6), 1103-1113. doi: 10.1139/l05-066
  • Li B, Tran CTN and Pan TC (2009). Experimental and numerical investigations on the seismic behavior of lightly reinforced concrete beam-column joints. ASCE Journal of Structural Engineering, 135(9): 1007-1018. doi: 10.1061/(ASCE)ST.1943-541X.0000040
  • Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering, 114(8), 1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
  • Menegotto, M., & Pinto, P. (1973). Method of Analysis for Cyclically Loaded Reinforced Concrete Plane Frames Including Changes in Geometry and Non-elastic Behavior of Elements under Combined Normal Force and Bending. Proceedings. IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, International Association of Bridge and Structural Engineering, 13, pp. 15-22. Lisbon, Portugal.
  • Persson, B. (2001). A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete. Cement and concrete Research, 31(2), 193-198. doi: 10.1016/S0008-8846(00)00497-X
  • SeismoStruct v6.5. (2013). A computer program for static and dynamic nonlinear analyses of framed structures. Available from http://www.seismosoft.com
  • Sonebi, M., Tamimi, A. K., & Bartos, P. J. (2003). Performance and cracking behavior of reinforced beams cast with self-consolidating concrete. Materials Journal, 100(6), 492-500. doi: 10.14359/12956
  • Tsonos, A. G., Tegos, I. A., & Penelis, G. G. (1993). Seismic resistance of type 2 exterior beam-column joints reinforced with inclined bars. Structural Journal, 89(1), 3-12. doi: 10.14359/1278
  • Valcuende, M., & Parra, C. (2009). Bond behaviour of reinforcement in self-compacting concretes. Construction and Building Materials, 23(1), 162-170. doi: 10.1016/j.conbuildmat.2008.01.007
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ