Karıştırıcılı Ceket Tip Isı Değiştiricilerin Isıl Davranışlarının Deneysel ve Sayısal Olarak İncelenmesi

Bu çalışmada, karıştırıcılı ceket tip bir ısı değiştiricisinin ısıl performansı ceket tarafı su giriş sıcaklık ve debi koşulları altında deneysel ve sayısal olarak incelenmiştir. Sayısal çalışmada, ısı değiştiricisinin üç boyutlu hesaplamalı akışkanlar dinamiği (HAD) modeli oluşturulmuş ve analizler ANSYS-Fluent paket programı kullanılarak yapılmıştır. Ayrıca tank içerisindeki suyun sıcaklık ve hızına olan etkisini inceleyebilmek için hem deneysel hem de sayısal çalışmada tank içerisine bir karıştırıcı eklenmiştir. Deneysel çalışmayla benzer koşullar altında gerçekleştirilen analiz sonuçlarının deneysel çalışma sonuçlarıyla uyumlu olduğu görülmüştür. Artan giriş sıcaklığıyla debi etkisinin azaldığı sonucuna varılmıştır. Karıştırıcı devredeyken ve debi 0.5’ten 2.5 l/dk’ya çıkarıldığında, hedeflenen sıcaklığa ulaşma süreleri 30, 40 ve 50°C giriş sıcaklık koşullarında sırasıyla 1600’den 900’e, 2500’den 1350’ye ve 4900’den 1400’e azalmıştır. Genel olarak tüm debi koşullarında karıştırıcı etkisinin artan giriş sıcaklık değeriyle birlikte arttığı gözlenmiştir.

THE EXPERIMENTAL AND NUMERICAL INVESTIGATION OF THE THERMAL BEHAVIORS OF A JACKETED HEAT EXCHANGER WITH A STIRRER

In this study, the thermal performance of a jacketed heat exchanger with a stirrer was experimentally and numerically investigated under different jacket side water inlet temperature and flow rate conditions. In the numerical study, a three-dimensional computational fluid dynamics (CFD)model of the heat exchanger was generated and the analyzes were performed with the ANSYS-Fluent software package. In addition, a stirrer was added to both the experimental and the numerical study to obtain the effects of the stirrer on the temperature and velocity values of the water in the tank. It was seen that the results of the analyzes performed under similar conditions to the experimental study were in good agreement with the experimental study. It was concluded that the effect of the flow rate decreases with increasing inlet temperature. When the stirrer was activated and the flow rate was increased from 0.5 to 2.5 l/min in 30, 40, and 50°C inlet temperature conditions, the time to reach the target temperature inside the tank decreased from approximately 1600 to 900, from 2500 to 1350, and from 4900 to 1400, respectively. In general, it was observed that the effect of the stirrer increased with increasing inlet temperature in all flow rate conditions.

___

  • 1. ANSYS Fluent User’s Guide, Release 15.0, (2013).
  • 2. Bai, X. S., Yang, W. W., Zhang, W. Y., Yang, F. S., and Tang, X. Y. (2020) Hydrogen absorption performance of a novel cylindrical MH reactor with combined loop-type finned tube and cooling jacket heat exchanger, International Journal of Hydrogen Energy, 45(52), 28100-28115. doi: 10.1016/j.ijhydene.2020.04.209
  • 3. Bayram, H. and Sevilgen, G. (2017a) The effects of using a stirrer on the thermal performance of a water jacketed heat exchanger, International Conference on Engineering Technologies (ICENTE'17), 937-939.
  • 4. Bayram, H., and Sevilgen, G. (2017b) Numerical investigation of the effect of variable baffle spacing on the thermal performance of a shell and tube heat exchanger, Energies, 10(8), 1156. doi: 10.3390/en10081156
  • 5. Bayram, H. and Sevilgen, G. (2018) Numerical investigation of the effects of different baffle types on the thermal performance of a shell and tube heat exchanger, Academic Platform-Journal of Engineering and Science, 6(3), 58-66. doi:10.21541/apjes.397414
  • 6. Bayram, H. (2022a) Analysis of numerical and grey relation method of the effect of helical tape insert density on the hydrothermal performance, Case Studies in Thermal Engineering, 39, 102406. doi:10.1016/j.csite.2022.102406
  • 7. Bayram, H. (2022b) Numerical investigation of heat transfer improvement of a double pipe heat exchanger with koch snowflake fractal and longitudinal fin designs, International Journal of Fluid Mechanics Research, 49(1). doi: 10.1615/InterJFluidMechRes.2022042499
  • 8. Bhutta, M. M. A., Hayat, N., Bashir, M. H., Khan, A. R., Ahmad, K. N., and Khan, S. (2012) CFD applications in various heat exchangers design: A review, Applied Thermal Engineering, 32, 1-12. doi: 10.1016/j.applthermaleng.2011.09.001
  • 9. Cerisola, A. (2012). Numerical analysis of tidal turbines using virtual blade model and single rotating reference frame, Department of Mechanical Engineering-University of Washington, Seattle (WA)-USA: IRENAV, ARTS ET METIERS ParisTech.
  • 10. Cui, Y., Zhang, H., Li, X., Yang, M., and Guan, Z. (2018) Computational and experimental investigation of laminar flow mixing system in a pitched-blade turbine stirred tank, International Journal of Agricultural and Biological Engineering, 11(4), 111-117. doi: 10.25165/j.ijabe.20181104.2729
  • 11. Daza, S. A., Prada, R. J., Nunhez, J. R., and Castilho, G. J. (2019) Nusselt number correlation for a jacketed stirred tank using computational fluid dynamics, The Canadian Journal of Chemical Engineering, 97(2), 586-593. doi: 10.1002/cjce.23385
  • 12. Debab, A., Chergui, N., Bekrentchir, K., and Bertrand, J. (2011) An investigation of heat transfer in a mechanically agitated vessel, Journal of Applied Fluid Mechanics, 4(2), 2-50. doi: 10.36884/jafm.4.02.11915
  • 13. Delgado, M., Lázaro, A., Mazo, J., Peñalosa, C., Marín, J. M., and Zalba, B. (2017) Experimental analysis of a coiled stirred tank containing a low cost PCM emulsion as a thermal energy storage system. Energy, 138, 590-601. doi:10.1016/j.energy.2017.07.044
  • 14. Dhakal, T. P., and Walters, D. K. (2009) Curvature and rotation sensitive variants of the K-Omega SST turbulence model, In Fluids Engineering Division Summer Meeting, Vol. 43727, pp. 2221-2229.
  • 15. Fernandes, L. B., and Nunhez, J. R. (2022) CFD Simulation of Mixing Tank with Different Rushton Agitator Diameters and Constant Power Consumption, Proceedings of the 7th World Congress on Momentum, Heat and Mass Transfer (MHMT'22), Lisbon, Portugal. doi: 10.11159/icmfht22.135
  • 16. Gavali, M. G., Subbarao, A. V., and Marathe, N. V. (2007) Optimization of water jacket using CFD for effective cooling of water-cooled diesel engines, SAE Technical Paper, 2007-26-049. doi: 10.4271/2007-26-049
  • 17. Hellsten, A., Laine, S., Hellsten, A., and Laine, S. (1997) Extension of the k-omega-SST turbulence model for flows over rough surfaces. In 22nd atmospheric flight mechanics conference, 3577, 252-260.
  • 18. Kakac, S., Liu, H., & Pramuanjaroenkij, A. (2020) Heat exchangers: selection, rating, and thermal design. CRC press.
  • 19. Karras, N., Kuthada, T., and Wiedemann, J. (2014) An approach for water jacket flow simulations, SAE Technical Paper, 2014-01-0659. doi: 10.4271/2014-01-0659
  • 20. Kessler, M. P., Kruger, M., Ataídes, R., de La Rosa Siqueira, C., Argachoy, C., and Mendes, A. S. (2007) Numerical analysis of flow at water jacket of an internal combustion engine, SAE Technical Paper, 2007-01-2711. doi:10.4271/2007-01-2711
  • 21. Kruger, M., Kessler, M. P., Ataídes, R., de La Rosa Siqueira, C., dos Reis, M. V. F., Mendes, A. S., and Argachoy, C. (2008) Numerical analysis of flow at water jacket of an internal combustion engine, SAE Technical Paper, 2008-01-0393. doi: 10.4271/2008-01-0393
  • 22. Lakghomi, B., Kolahchian, E., Jalali, A., and Farhadi, F. (2008) Coil and jacket’s effects on internal flow behavior and heat transfer in stirred tanks, International Journal of Chemical and Molecular Engineering, 2(12), 383-387. doi:10.5281/zenodo.1086197
  • 23. Major-Godlewska, M. (2014) An effect of different factors on heat transfer process in an agitated vessel, Czasopismo Techniczne, 2, 85-94.
  • 24. Missen, R. W., Missen, R. W., Mims, C. A., and Saville, B. A. (1999) Introduction to chemical reaction engineering and kinetics. John Wiley & Sons Incorporated.
  • 25. Rezend, C. (1996). CFD analysis of flow field in a mixing tank with and without baffles, Master of Science, Department of Mechanical Engineering College of Engineering Rochester Institute of Technology Rochester, New York.
  • 26. Sadino‐Riquelme, M. C., Rivas, J., Jeison, D., Donoso‐Bravo, A., and Hayes, R. E. (2022) Computational modelling of mixing tanks for bioprocesses: Developing a comprehensive workflow, The Canadian Journal of Chemical Engineering, 100(11), 3210-3226. doi: 10.1002/cjce.24220
  • 27. Sevilgen, G., and Bayram, H. (2020) Numerical analysis of heat transfer of a brazed plate heat exchanger, Academic Platform-Journal of Engineering and Science, 8(3), 491-499. doi: 10.21541/apjes.683151
  • 28. Sharafani, A. T. (2015). Simulation of The Agitated Batch, Master of Science, Czech Tecnical University in Prague, Faculty of Mechanical Engineering, Department of Process Engineering.
  • 29. Tong, L., Yuan, Y., Yang, T., Bénard, P., Yuan, C., and Xiao, J. (2021) Hydrogen release from a metal hydride tank with phase change material jacket and coiled-tube heat exchanger, International Journal of Hydrogen Energy, 46(63), 32135-32148. doi: 10.1016/j.ijhydene.2021.06.230
  • 30. Zaniewski, D., Klimaszewski, P., Klonowicz, P., Witanowski, Ł., Lampart, P., Jędrzejewski, Ł., and Suchocki, T. (2023) Organic Rankine Cycle turbogenerator cooling–optimization of the generator water jacket heat exchange surface, Applied Thermal Engineering, 120041. doi: 10.1016/j.applthermaleng.2023.120041
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ