Isı Transferinde Bilgisayar Destekli Simülasyon ve Ölçüm BelirsizliğiMefhumlarınınKeşifTabanlı Örnek Vaka Aracılığı ile Öğretilmesi

Bu makalede lisans öğrencilerine bilgisayar destekli simülasyon ve ölçüm belirsizliği kavramlarını proje tabanlı öğrenme usulü ile öğretebilmek için kullanılan bir çalışmaanlatılmıştır. Çalışma silindirik bir çubuk üzerindeki iletimsel ısı transferinin deneysel, teorik, numerik incelenmesini içermektedir. Öğrencilerin karmaşık teorik altyapıya sahip sistemlerle ilgilenmelerinin dikkatlerini dağıtacağı iyi bilinen bir gerçek olduğu için teorik altyapısı rahatlıkla anlaşılabilecek deneysel bir sistem kasıtlı olarak seçilmiştir ki bu sayede öğrencilerin dikkatlerinin bilgisayar destekli simülasyonlar ve ölçüm belirsizliği konuları üzerine yoğunlaşmaları hedeflenmiştir. Öğrencilerden her bir adımda elde ettikleri sonuçları bir diğeri ile karşılaştırmaları istenmiş ve varsa birbirleri arasındaki sapmaların muhtemel sebeplerini ortaya çıkarmaları beklenmiştir. Her bir adımın öğrenciler sonuçlardan tatmin oluncaya kadar tekrarlanması sağlanmıştır.

A DISCOVERY-BASED CASE STUDY TO TEACH THE CONCEPTS OF COMPUTATIONAL SIMULATION AND MEASUREMENT UNCERTAINTY IN HEAT TRANSFER

The present study was used to teach undergraduate students the concepts of computational simulation and measurement uncertainty via discoverybased learning. The study included experimental-theoretical-numerical examination of heat conduction along a cylindrical rod. Because it is a well-known fact that dealing with systems having complex theoretical background distracts students‟ attention, an easy to be comprehended experimental system had intentionally chosen to allow the students mainly focus on the computational simulations and measurement uncertainty. Students were requested to compare the results obtained at each step and to figure out the possible causes of discrepancies among the results if there was any. The steps were repeated several times until the students satisfied with the results.

___

  • 1. Kassim, H. O. and Cadbury, R. G. (1996) The place of the computer in chemical engineering education, Computers & Chemical Engineering, 20(S2), S1341-S1346. doi: 10.1016/0098-1354(96)00230-X
  • 2. NSF Report (2006) Simulation-based engineering sciences, Blue Ribbon Panel.
  • 3. Sert, C. And Nakiboglu, G. (2007) Use of computational fluid dynamics (CFD) in teaching fluid mechanics, ASEE 2007 Annual Conference & Exposition, Honolulu, Hawaii, 12.1527.1 - 12.1527.13.
  • 4. Dahm, K. and Hesketh, R. (2008) Two experiments for the introductory chemical reaction engineering course, Education for Chemical Engineers, 3(1), e1-e5. doi: 10.1016/j.ece.2007.07.001
  • 5. Stamou, A. I. and Rutschmann, P. (2011) Teaching simple water quality models, Education for Chemical Engineers, 6(4), e132-e141. doi: 10.1016/j.ece.2011.08.005
  • 6. Zamora, B., Kaiser, A. S. And Vicente, P. G. (2010) Improvement in learning on fluid mechanics and heat transfer courses using computational fluid dynamics, International Journal of Mechanical Engineering Education, 38(2), 147-166. doi: 10.7227/IJMEE.38.2.6
  • 7. Moore, T. J., Miller, R. L., Lesh, R. A., Stohlmann, M. S. And Kim, Y. R. (2013) Modeling in engineering: the role of representational fluency in students‟ conceptual understanding, J. Of Eng. Edu., 102(1), 141-178. doi: 10.1002/jee.20004
  • 8. Çengel, Y. A. and Ghajar, A. J. (2015) Heat and Mass Transfer: Fundamentals & Applications, 5th Ed. McGraw-Hill, New York.
  • 9. Roache, P. J. (1997) Quantification of uncertainty in computational fluid dynamics, Annual Review of Fluid Mechanics, 29, 123-160. doi: 10.1146/annurev.fluid.29.1.123
  • 10. Vazquez-Arenas, J and Pritzker, M. (2010) How to relate experiments and theory for electrochemistry? Linear sweep voltammetry for the reduction of Fe(CN)63−, Education for Chemical Engineers, 5, e78-e86. doi: 10.1016/j.ece.2010.08.001
  • 11. Magana, A. J. and Coutinho, G. S. (2017) Modeling and simulation practices for a computational thinking-enabled engineering workforce, Computer Applications in Engineering Education, 25, 62-78. doi: 10.1002/cae.21779
  • 12. Magana, A. J., Falk, M. L., Vieira, C., Reese Jr., M. J., Alabi, O. And Patinet, S. (2017) Affordances and challenges of computational tools for supporting modeling and simulation practices, Computer Applications in Engineering Education, 25, 352-375. doi: 10.1002/cae.21804
  • 13. Zhou, X.-L. and Wang, J.-H. (2016) Interactive computer for teaching biot poroelasticity modeling in civil engineering, Computer Applications in Engineering Education, 24, 5-15. doi: 10.1002/cae.21662
  • 14. Guisasola, A., Baeza, J. A., Carrera, J., Sin, G., Vanrolleghem, P. A. and Lafuente, J. (2006) The influence of experimental data quality and quantity on parameter estimation accuracy andrews inhibition model as a case study, Education for Chemical Engineers, 1, 139-145. doi: 10.1205/ece06016
  • 15. Chimeno, M. F., Gonzalez, M. A. G. and Castro, J. R. (2005) Teaching measurement uncertainty to undergraduate electronic instrumentation students, International Journal of Engineering Education, 21(3), 525-533.
  • 16. Jalkio, J. A. (2011) Measurement uncertainty in undergraduate physics student misconceptions and points of difficulty, 2011 ASEE Annual Conference & Exposition, Vancouver, BC, Canada, 22.1048.1-22.1048.7
  • 17. Batstone, D. J. (2013) Teaching uncertainty propagation as a corecomponent in process engineering statistics, Education for Chemical Engineers, 8, e132-e139. doi: 10.1016/j.ece.2013.10.003
  • 18. Finlayson, B. A. (2007) Use of COMSOL Multiphysics in undergraduate research projects to solve real-life problems, the AIChE 2007 Annual Meeting, Salt Lake City, UT, USA, 1-16.
  • 19. Arslan, R. (2009) Activities of life-long learning and continuing engineering education in Uludağ University, Uludağ University Journal of the Faculty of Engineering, 14(1), 77-86. doi: 10.17482/uujfe.45309
  • 20. Hillard, J., Branch, K. And Butterfield, A. (2015) Teaching fluid dynamics with the ball-in-tube device, International Journal of Mechanical Engineering Education, 43(1), 15-22. doi: 10.1177/0306419015573907
  • 21. Chen, W., Shah, U. And Brechtelsbauer, C. (2016) The discovery laboratory – A student-centred experiential learning practical: Part I – Overview, Education for Chemical Engineers, 17:44-53. doi: 10.1016/j.ece.2016.07.005
  • 22. Gvirtzman, Z. and Garfunkel, Z. (1996) Numerical solutions for the one-dimensional heat-conduction equation using a spreadsheet, Computers & Geosciences, 22(10), 1147-1158. doi: 10.1016/s0098-3004(96)00052-0
  • 23. Abu-Mulaweh, H. I. (2005) Integration of a fin experiment into the undergraduate heat transfer laboratory, International Journal of Mechanical Engineering Education, 33(1), 83-92. doi: 10.7227/ijmee.33.1.9
  • 24. Abu-Mulaweh, H. I. and Mueller, Jr, D. W. (2006) Correlation equation for heat transfer coefficients for circular pin fins, International Journal of Mechanical Engineering Education, 34(3), 211-219. doi: 10.7227/ijmee.34.3.3
  • 25. Stammitti, A. (2013) Spreadsheets for assisting Transport Phenomena Laboratory experiences, Education for Chemical Engineers, 8, e58-e71. doi: 10.1016/j.ece.2013.02.005
  • 26. Datta, A. K., Rakesh, V. and Way, D. G. (2013) Simulation as an integrator in an undergraduate biological engineering curriculum, Comput. Appl. Eng. Educ., 21: 717-727. doi:10.1002/cae.20519
  • 27. Cakmak, M. E. (2018a) Theoretical and numerical examination of temperature distribution along a cylindrical brass rod with constant cross sectional area and insulated tip using EXCEL and COMSOL, at Research Gate. doi: 10.13140/RG.2.2.30157.13286
  • 28. Cakmak, M. E. (2018b) Constructing 2D mesh systems in COMSOL, at Research Gate. doi: 10.13140/RG.2.2.24216.55047
  • 29. Moffat, R. J. (1988) Describing the uncertainties in experimental results, Experimental Thermal and Fluid Science, 1, 3-17. doi: 10.1016/0894-1777(88)90043-x
  • 30. Holman, J. P. (2012) Experimental Methods for Engineers, McGraw-Hill, New York.
  • 31. Cakmak, M. E. (2018c) Uncertainty propagation in the experimental-theoretical examination of temperature distribution along a brass rod with adiabatic tip condition, at Research Gate. doi: 10.13140/RG.2.2.25731.81441
  • 32. Churchill, S. W. and Chu, H. H. S. (1975) Correlating equations for laminar and turbulent free convection from a horizontal cylinder, Int. J. Heat Mass Transfer, 18, 1049–1053. doi: 10.1016/0017-9310(75)90222-7
  • 33. Bergman, T. L., Lavine, A. S., Incropera, F. P. and Dewitt D. P. (2011) Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Jefferson City.
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ