GAZLI PARÇACIK DETEKTÖRLERİNİN ÇALIŞMA VERİMİ VE KARARLILIĞININ İNCELENMESİ

Gaz kazancı, detektörden elde edilen sinyalin kalitesini belirleyen en önemli sayısal niceliklerden biridir. Sinyal oluşumu sırasında ortaya çıkan uyarılmış atomlar, Penning transferleri ve geri-besleme süreçleriyle kazançta kayda değer artışlara olanak sağlarlar. Bu süreçlerin mekanizmasını incelemek için literatürdeki argon-izobütan gaz karışımlarında ölçülen kazanç verilerinin benzetişimi yapıldı.

Investigation of Working Performance and Stability of Gaseous Particle Detectors

Gas gain is one of the most important numerical quantities, which determines the quality of the signal obtained from a detector. The excited atoms, created during the signal generation, may cause dramatic increases on the gas gain via Penning transfers and feedback processes. The mechanisms of these processes have been investigated by the simulations of the experimental gain data measured in argon-isobutane gas mixtures given in literature.

___

  • Biagi, S. F. (1999), Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields, Nucl. Instrum. Meth. A 421(1–2), 234–240. doi: 10.1016/S0168-9002(98)01233-9
  • Bidault, J. -M. ve diğ. (2007), The first applications of newly developed gaseous detectors with resistive electrodes for UV imaging in daylight conditions, Nucl. Instrum. Meth. A 580(2–3), 1036–1041. doi: 10.1016/j.nima.2007.06.061
  • Bronić, I. J. ve Grosswendt, B. (1996), Ionization yield formation in argon-isobutane mixtures as measured by a proportional-counter method, Nucl. Instrum. Meth. B 117(1–2) 5–17. doi: 10.1016/0168-583X(96)00222-4
  • Bronić, I. J. ve Grosswendt, B. (1998), Gas amplification and ionization coefficients in isobutane and argon–isobutane mixtures at low gas pressures, Nucl. Instrum. Meth. B 142(3) 219–244. doi: 10.1016/S0168-583X(98)00286-9
  • Charpak, G. ve diğ. (2007), Development of new hole-type avalanche detectors and the first results of their applications, IEEE Nuclear Science Symposium Conference Record MP4(6), 4649–4657. doi: 10.1109/NSSMIC.2007.4437145
  • Charpak, G. ve diğ. (2010), Performance of wire-type Rn detectors operated with gas gain in ambient air in view of its possible application to early earthquake predictions, arXiv:1002.4732, 1–25.
  • Charpak, G. ve Sauli, F. (1978), The multistep avalanche chamber: A new high-rate, high-accuracy gaseous detector, Phys. Lett. B 78(4), 523–528. doi: 10.1016/0370-2693(78)90502-6
  • Charpak, G., Benaben, P., Breuil, P., Peskov, V. (2008), Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification, J. Instrum. 3(P02006), 1–18. doi: 10.1088/1748-0221/3/02/P02006
  • Charpak, G., G., Bouclier, R., Bressani, T., Favier, J. ve Zupančič, Č. (1968) The use of multiwire proportional counters to select and localize charged particles, Nucl. Instr. and Meth. 62(3), 262–268. doi: 10.1016/0029-554X(68)90371-6
  • Danielsson, M. ve diğ. (2004), Novel gaseous detectors for medical imaging, Nucl. Instrum. Meth. A 383(1–2), 406–410. doi: 10.1016/j.nima.2003.11.038
  • Druyvesteyn, M. J. ve Penning, F. M. (1940), The Mechanism of Electrical Discharges in Gases of Low Pressure, Rev. Mod. Phys. 12(2) 87–124. doi: 10.1103/RevModPhys.12.87; Erratum (1941) Rev. Mod. Phys. 13(72). doi: 10.1103/RevModPhys.13.72
  • Emelyanov, A. N., Aleksandrovich, N. L., Sunyaev, R. A. (2000), A catalog of X-ray sources as observed by the TTM/COMIS telescope onboard the Mir-Kvant observatory in 1988–1998, Astronomy Letters 26(5), 297–308. doi: 10.1134/1.20394
  • Fetal, S. ve diğ. (2003), Dose imaging in radiotherapy with an Ar–CF4 filled scintillating GEM, Nucl. Instrum. Meth. A 513(1–2), 42–46. doi: 10.1016/S0168-9002(03)02133-8
  • Fonte, P. ve diğ. (2005), Novel single photon detectors for UV imaging, Nucl. Instrum. Meth. A 553(1–2), 30–34. doi: 10.1016/j.nima.2005.08.002
  • Francke, T. ve diğ. (2001), Dose reduction in medical X-ray imaging using noise free photon counting, Nucl. Instrum. Meth. A 471(1–2), 85–87. doi: 10.1016/S0168-9002(01)00920-2
  • Geiger, H. ve Müller W. (1928) Das Elektronenezählrohr, Phys. Zeits. 29, 839–841.
  • Geiger, H. ve Rutherford, E. (1908) An electrical method of counting the number of α-particles from radio-active substances, Proc. Royal Soc. A 81(546), 141–161. doi: 10.1098/rspa.1908.0065
  • Giacconi, R. (2003), Nobel Lecture: The dawn of x-ray astronomy, Rev. Mod. Phys. 75(3), 995–1010. doi: 10.1103/RevModPhys.75.995
  • Giomataris, Y., Rebourgeard, Ph., Robert, J.P., Charpak, G. (1996), MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments, Nucl. Instrum. Meth. A 376(1), 29–35. doi: 10.1016/0168-9002(96)00175-1
  • Grupen, C. (2008), Particle Detectors, Cambridge University Press.
  • Hagmann, C., Bernstein, A. (2004), Two-phase emission detector for measuring coherent neutrino-nucleus scattering, IEEE Trans. Nucl. Sci. 51(5), 2151–2154. doi: 10.1109/TNS.2004.836061
  • Houry, M. ve diğ. (2006), DEMIN: A neutron spectrometer, Micromegas-type, for inertial confinement fusion experiments, Nucl. Instrum. Meth. A 557(2), 648–656. doi: 10.1016/j.nima.2005.11.184
  • http://www.nobelprize.org/nobel_prizes/physics/laureates/1992/, erişim tarihi 26.04.2018, konu 1992 Nobel Fizik Ödülü.
  • Iacobaeus, C. ve diğ. (2001), A novel portal imaging device for advanced radiation therapy, IEEE Trans. Nucl. Sci. 48(4), 1496–1502. doi: 10.1109/23.958386
  • Iacobaeus, C. ve diğ. (2006), A high position resolution X-ray detector: an "Edge on" illuminated capillary plate combined with a gas amplification structure, IEEE Trans. Nucl. Sci. 53(2), 554–561. doi: 10.1109/TNS.2006.872635
  • Knoll, G. F. (2000), Radiation detection and measurements, John Willey and Sons, Inc., New York.
  • Mermigka, K. (2008), Simulation studies at the MICROMEGAS detector and MICROPATTERN applications in medicine, Collaboration with CERN, Demokritos and N.T.U.A, Master Thesis (I.D. 1289), 256 sayfa.
  • Ostling, J. ve diğ. (2003), Study of hole-type gas multiplication structures for portal imaging and other high count rate applications, IEEE Trans. Nucl. Sci. 50(4), 809–819. doi: 10.1109/TNS.2003.814562
  • Pacella, D., Bellazzini, R., Brez, A., Finkenthal, M. (2006), Soft X-ray 2-D imaging with time resolution of microseconds and continuous frame rate, J. Instrum. 1(P09001), 1–12. doi: 10.1088/1748-0221/1/09/P09001
  • Pancin, J., ve diğ. (2004), Measurement of the n_TOF beam profile with a micromegas detector, Nucl. Instrum. Meth. A 524(1–3), 102–114. doi: 10.1016/j.nima.2004.01.055
  • Penning, F. M. (1928), Über den Einfluß sehr geringer Beimischungen auf die Zündspannung der Edelgase, Zeitschrift für Physik 46(5–6), 335–348. doi: 10.1007/BF01390558
  • Penning, F. M. (1934), The starting potential of the glow discharge in neon argon mixtures between large parallel plates: II. Discussion of the ionisation and excitation by electrons and metastable atoms, Physica 1(7–12), 1028–1044. doi: 10.1016/S0031-8914(34)80298-4
  • Ramsey, B. D. ve diğ. (1996), A large-area microstrip-gas-counter for X-ray astronomy, Nucl. Instrum. Meth. A 383(2–3), 424–430. doi: 10.1016/S0168-9002(96)00853-4
  • Rodionov, I. ve diğ. (2005), Advanced gaseous photodetectors for hyperspectroscopy and other applications, IEEE Nuclear Science Symposium Conference Record J04(2), 3045–3049. doi: 10.1109/NSSMIC.2005.1596972
  • Rubbia, A. (2004), Experiments For CP-Violation: A Giant Liquid Argon Scintillation, Cerenkov And Charge Imaging Experiment ?, arXiv: hep-ph/0402110, 1–31.
  • Rubbia, A. (2006), ArDM: a ton-scale liquid Argon experiment for direct detection of Dark Matter in the Universe, J. Phys. Conf. Ser. 39, 129–132. doi: 10.1088/1742-6596/39/1/028
  • Sauli, F. (1997), GEM: A new concept for electron amplification in gas detectors, Nucl. Instrum. Meth. A 386(2–3), 531–534. doi: 10.1016/S0168-9002(96)01172-2
  • Sauli, F. (2014), Gaseous Radiation Detectors: Fundamentals and Applications, Cambridge University Press
  • Spindt, C. A., Brodie, I., Humphrey, L., Westerberg, E. R. (1976), Physical properties of thin‐film field emission cathodes with molybdenum cones, J. Appl. Phys. 47, 5248–5263. doi: 10.1063/1.322600
  • Veenhof, R. (1998), Garfield, recent developments, Nucl. Instrum. Meth. A 419(2–3), 726–730. doi: 10.1016/S0168-9002(98)00851-1
  • Walenta, A. H. (1979), The Time Expansion Chamber and Single Ionization Cluster Measurement, IEEE Trans. Nucl. Sci. 26(1), 73–80. doi: 10.1109/TNS.1979.4329616
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

GİYSİLİK KUMAŞLARIN YAPISININ HAVA GEÇİRGENLİĞİ VE TERMAL KONFOR ÖZELLİKLERİ ÜZERİNE ETKİSİNİN İNCELENMESİ

Ayca GURARDA, Tuğba ZENGİN, Gökçe TOSUN

Güncel Metasezgisel Algoritmalar İçin Kaos Tabanlı Yaklaşımlar

Fahri VATANSEVER, Yiğit Çağatay KUYU

AÇIKLIĞA SAHİP METALİK KUTULARIN ZAMAN DOMENİ SONLU ELEMANLAR YÖNTEMİ(TDFEM) İLE ANALİZİ

Kübra KAŞ, SİBEL YENİKAYA, Mesut TOZAN

PROPİYONİK ASİTİN İZOBUTİL ALKOL İLE AMBERLYST 36 VE AMBERLYST 70 KATALİZÖRLERİ VARLIĞINDA ESTERLEŞME KİNETİĞİ

Halit Levent HOŞGÜN, Alime ÇITAK

TÜRKİYE’DE MEVZUATLAR VE STANDARTLAR AÇISINDAN SÜRDÜRÜLEBİLİR YAPIM

Şerife GÖKÇE, OSMAN AYTEKİN, HAKAN KUŞAN, İSMAİL ZORLUER

GÜNCEL METASEZGİSEL ALGORİTMALAR İÇİN KAOS TABANLI YAKLAŞIMLAR

Yiğit Çağatay KUYU, Fahri VATANSEVER

DOĞAL YOL İLE HAVALANDIRILAN BİR SANAYİ KURULUŞUNDA ISIL KONFOR ĠNCELEMESĠ VE GĠYSĠ FAKTÖRÜ, METABOLĠK ORAN, ÇALIŞAN AĞIRLIĞININ KONFORA ETKİLERİNİN ARAŞTIRILMASI

Kemal Furkan SÖKMEN

HİPERSPEKTRAL VERİLERİN SINIFLANDIRMASINDA DERİN ÖĞRENME VE BOYUT İNDİRGEME TEKNİKLERİNİN KARŞILAŞTIRILMASI

Gizem ORTAÇ, Gıyasettin ÖZCAN

BİNA ENTEGRELİ FOTOVOLTAİK TERMAL (BIPVT) KOLLEKTÖR VE SİSTEMLERİN ELEKTRİKSEL VERİMLERİNİN TAHMİNİ İÇİN YENİ, PRATİK VE GÜVENİLİR ANALİTİK MODELLER

Pinar MERT CUCE

TEMEL DİŞLİ TASARIM PARAMETRELERİNİN TEK DİŞ VE KAVRAMA RİJİTLİĞİNE ETKİSİNİN SONLU ELEMANLAR METODU İLE İNCELENMESİ

Oğuz DOĞAN, Fatih KARPAT