Fabry-Perot İnterferometre Tabanlı Sensörlerde Mesa Boyutlarının MEMS Diyaframlar Üzerine Etkisi

Bu çalışmada diyafram tabanlı Fabry-Perot boşluklu fiber optik sensörlerde mesa boyutlarının sensör tepkisine etkileri detaylı olarak incelenmiştir. Literatürde ortası yükseltilmiş veya mesa olarak adlandırılan diyaframlar yeterince tartışılmış fakat mesa kalınlığının sensör performansına etkisi detaylı tartışılmamıştır. Bu tarz diyaframların kesin analitik çözümü ise bulunmamaktadır. Bu nedenle farklı kalınlık ve yarıçapa sahip diyaframlar seçilerek mesanın diyaframdan ince olması ve kalın olması durumlarına göre diyaframın, uygulanan akustik basınca göre esneme ve frekans tepkileri ANSYS programı kullanılarak analiz edilmiştir. Mesanın kalınlığı diyaframın kalınlığından küçük olması durumunda merkez esnemesi ciddi olarak değişmektedir. Ancak mesa kalınlığının diyaframın kalınlığından 2 kat büyük olması durumunda ise esneme sonuçlarında ciddi bir değişim olmamaktadır. Benzer şekilde mesa kalınlığının diyaframdan ince olması durumda sensörün frekans cevabı artan mesa yarıçapı ile ciddi olarak değişmektedir. Mesa kalınlığının diyafram kalınlığından daha büyük olduğu durumlarda ise frekans cevabı daha az değişmektedir. Elde edilen sonuçlara göre mesa diyafram tabanlı Fabry-Perot boşluklu fiber optik sensör tasarlanırken mesa boyutları dikkate alınmalıdır.

THE EFFECT OF MESA DIMENSIONS ON MEMS DIAPHRAGMS FOR FABRY-PEROT INTERFEROMETER-BASED FIBER OPTIC SENSORS

In this study, the effects of mesa dimensions on sensor response in diaphragm-based FabryPerot fiber optic sensors (FOSs) were investigated in detail. Mesa diaphragms, also called centerembossed diaphragms, have been discussed sufficiently in the literature, but the effect of mesa thickness on sensor performance has not been discussed in detail. Moreover, there is no precise analytical solution for such diaphragms. For this reason, diaphragms with different thicknesses and radii were selected, and the deflection and frequency responses of the diaphragm according to the applied acoustic pressure were analyzed using the ANSYS software, depending on whether the mesa is thinner or thicker than the diaphragm. If the thickness of the mesa is smaller than the thickness of the diaphragm, the center deflection changes drastically. However, if the thickness of the mesa is two times greater than the thickness of the diaphragm, there is no significant change in the deflection results. Similarly, if the mesa thickness is thinner than the diaphragm, the sensor’s frequency response changes drastically with increasing mesa radius. In cases where the mesa thickness is larger than the diaphragm thickness, the frequency response changes less. According to the results, mesa dimensions should be considered when designing a mesa diaphragm-based Fabry-Perot FOS.

___

  • 1. Alwis, L. S., Bremer, K., & Roth, B. (2021). Fiber optic sensors embedded in textilereinforced concrete for smart structural health monitoring: A review. Sensors, 21(15), 4948. doi:10.3390/s21154948.
  • 2. Betta, G., Pietrosanto, A., & Scaglione, A. (2001). An enhanced fiber-optic temperature sensor system for power transformer monitoring. IEEE Transactions on instrumentation and measurement, 50(5), 1138-1143. doi:10.1109/19.963173.
  • 3. Cheng, L., Qianwen, L., Tingting, G., Jun, X., Shangchun, F., & Wei, J. (2015, November). An ultra-high sensitivity Fabry-Perot acoustic pressure sensor using a multilayer suspended graphene diaphragm. In 2015 IEEE SENSORS (pp. 1-4). IEEE. doi:10.1109/ICSENS.2015.7370318.
  • 4. Chin, K. K., Sun, Y., Feng, G., Georgiou, G. E., Guo, K., Niver, E., ... & Noe, K. (2007). Fabry-Perot diaphragm fiber-optic sensor. Applied optics, 46(31), 7614-7619. doi:10.1364/AO.46.007614.
  • 5. Cranch, G. A., Nash, P. J., & Kirkendall, C. K. (2003). Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications. IEEE Sensors Journal, 3(1), 19-30. doi:10.1109/JSEN.2003.810102.
  • 6. Deng, J., Xiao, H., Huo, W., Luo, M., May, R., Wang, A., & Liu, Y. (2001). Optical fiber sensor-based detection of partial discharges in power transformers. Optics & Laser Technology, 33(5), 305-311. doi:10.1016/S0030-3992(01)00022-6.
  • 7. El-Sherif, M. A., Yuan, J., & MacDiarmid, A. (2000). Fiber optic sensors and smart fabrics. Journal of intelligent material systems and structures, 11(5), 407-414. doi:10.1106/MKNKE482- GWUG-0HE7.
  • 8. Fernández, R., Amorebieta, J., García, I., Aldabaldetreku, G., Zubia, J., & Durana, G. (2021). Review of a custom-designed optical sensing system for aero-engine applications. International Journal of Turbomachinery, Propulsion and Power, 6(1), 3. doi:10.3390/ijtpp6010003.
  • 9. Ge, Y. X., Wang, M., & Yan, H. T. (2008, November). Mesa diaphragm-based Fabry-Perotoptical MEMS pressure sensor. In 2008 1st Asia-Pacific Optical Fiber Sensors Conference (pp. 1-4). IEEE. doi:10.1109/APOS.2008.5226325.
  • 10. Ge, Y., Wang, M., Rong, H., & Chen, X. (2008, January). A novel optical MEMS pressure sensor with a mesa diaphragm. In MEMS/MOEMS Technologies and Applications III (Vol. 6836, pp. 232-240). SPIE. doi:10.1117/12.755190.
  • 11. Ge, Y., Wang, T., Zhang, J., & Chang, J. (2016). Wavelength-demodulation MEMS Fabry Perot temperature sensor based on bimetallic diaphragm. Optik, 127(12), 5040-5043. doi:10.1016/j.ijleo.2016.02.050.
  • 12. Gong, Z., Chen, K., Yang, Y., Zhou, X., & Yu, Q. (2018). Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor. Sensors and Actuators B: Chemical, 260, 357-363. doi:10.1016/j.snb.2018.01.005.
  • 13. Hayber, S. E., Tabaru, T. E., & Saracoglu, O. G. (2019). A novel approach based on simulation of tunable MEMS diaphragm for extrinsic Fabry–Perot sensors. Optics Communications, 430, 14-23. doi:10.1016/j.optcom.2018.08.021.
  • 14. Hayber, Ş. E., & Aydemir, U. (2021). Design and simulation of a novel fungus-shaped center embossed diaphragm for fiber optic pressure sensors. Optical Fiber Technology, 61, 102429. doi:10.1016/j.yofte.2020.102429.
  • 15. Hayber, Ş. E., Tabaru, T. E., Aydemir, U., & Saraçoğlu, Ö. G. (2018). Fiber Optik Fabry- Perot Akustik Sensörler için Yeni Bir Diyafram Malzemesi Olarak 2D GaSe Benzetimi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 6(2), 369-381..
  • 16. Jin, J., He, J., Song, N., Ma, K., & Kong, L. (2020). A compact four-axis interferometric fiber optic gyroscope based on multiplexing for space application. Journal of Lightwave Technology, 38(23), 6655-6663. doi:10.1109/JLT.2020.3015713.
  • 17. Katsumata, T., Haga, Y., Minami, K., & Esashi, M. (2000). Micromachined 125μm diameter ultra miniature fiber-optic pressure sensor for catheter. IEEJ Transactions on Sensors and Micromachines, 120(2), 58-63. doi:10.1541/ieejsmas.120.58.
  • 18. Liao, H., Lu, P., Liu, L., Wang, S., Ni, W., Fu, X., ... & Zhang, J. (2017). Phase demodulation of short-cavity Fabry–Perot interferometric acoustic sensors with two wavelengths. IEEE Photonics Journal, 9(2), 1-9. doi:10.1109/JPHOT.2017.2689771.
  • 19. Lű, T. (2015). Influence of cavity loss on an extrinsic Fabry-Perot cavity intensity-based pressure sensor. Review of Scientific Instruments, 86(9), 095002. doi:10.1063/1.4929681.
  • 20. Mao, X., Yuan, S., Zheng, P., & Wang, X. (2017). Stabilized fiber-optic Fabry–Perot acoustic sensor based on improved wavelength tuning technique. Journal of Lightwave Technology, 35(11), 2311-2314.
  • 21. Mao, X., Yuan, S., Zheng, P., & Wang, X. (2017). Stabilized fiber-optic Fabry–Perot acoustic sensor based on improved wavelength tuning technique. Journal of Lightwave Technology, 35(11), 2311-2314.
  • 22. Min, R., Liu, Z., Pereira, L., Yang, C., Sui, Q., & Marques, C. (2021). Optical fiber sensing for marine environment and marine structural health monitoring: A review. Optics & Laser Technology, 140, 107082. doi:10.1016/j.optlastec.2021.107082.
  • 23. Nuclear Regulatory Commission. (1994). Transactions of the twenty-second water reactor safety information meeting (No. NUREG/CP--0139). Nuclear Regulatory Commission.
  • 24. Padron, I., Fiory, A. T., & Ravindra, N. M. (2008). Modeling and design of an embossed diaphragm fabry-perot pressure Sensor. In Mater. Sci. Technol. Conf. Exhib. MS T (Vol. 8, pp. 992-997).
  • 25. Padron, I., Fiory, A. T., & Ravindra, N. M. (2010). Novel MEMS Fabry-Perot interferometric pressure sensors. In Materials Science Forum (Vol. 638, pp. 1009-1014). Trans Tech Publications Ltd. doi:10.4028/www.scientific.net/MSF.638-642.1009.
  • 26. Poeggel, S., Tosi, D., Duraibabu, D., Leen, G., McGrath, D., & Lewis, E. (2015). Optical fibre pressure sensors in medical applications. Sensors, 15(7), 17115-17148. doi:10.3390/s150717115.
  • 27. Ramakrishnan, M., Rajan, G., Semenova, Y., & Farrell, G. (2016). Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors, 16(1), 99. doi:10.3390/s16010099.
  • 28. Rong, Q., Hao, Y., Zhou, R., Yin, X., Shao, Z., Liang, L., & Qiao, X. (2017). UW imaging of seismic-physical-models in air using fiber-optic Fabry-Perot interferometer. Sensors, 17(2), 397. doi:10.3390/s17020397.
  • 29. Sripriya, T., & Jeyalakshmi, V. (2007). International Conference on Signal Processing, Embedded System and Communication Technologies and their applications for Sustainable and Renewable Energy (ICSECSRE’ 14) Simulation of an Optical MEMS pressure sensor. In International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering An ISO (Vol. 3297, Issue 3).
  • 30. Sun, Y., Feng, G., Georgiou, G., Niver, E., Noe, K., & Chin, K. (2008). Center embossed diaphragm design guidelines and Fabry–Perot diaphragm fiber optic sensor. Microelectronics journal, 39(5), 711-716. doi:10.1016/j.mejo.2007.12.020.
  • 31. Sun, Y., Feng, G., Georgiou, G., Padron, I., Niver, E., Noe, K., & Chin, K. K. (2007). Fabry- Perot Diaphragm Fiber Optic Sensor (DFOS) for Acoustic Detection. Sensor and Transducer Journal, Special Issue, 76-83.
  • 32. Şahin, M., & Hayber, Ş. E. (2021). Fiber optic sensor design and prototyping for humidity detection in biogas reactors. Politeknik Dergisi, 1-1. doi:10.2339/politeknik.904631.
  • 33. Tian, B., Zhan, F., Han, F., Li, K., Zhao, N., Yang, N., & Jiang, Z. (2018). An optical fiber Fabry–Pérot micro-pressure sensor based on beam-membrane structure. Measurement Science and Technology, 29(12), 125104. doi:10.1088/1361-6501/aadfb1.
  • 34. Tosi, D., Poeggel, S., Iordachita, I., & Schena, E. (2018). Fiber optic sensors for biomedical applications. In Opto-mechanical fiber optic sensors (pp. 301-333). Butterworth-Heinemann.
  • 35. Totsu, K., Haga, Y., & Esashi, M. (2004). Ultra-miniature fiber-optic pressure sensor using white light interferometry. Journal of Micromechanics and Microengineering, 15(1), 71. doi:10.1088/0960-1317/15/1/011.
  • 36. Totsu, K., Haga, Y., & Esashi, M. (2004). Ultra-miniature fiber-optic pressure sensor using white light interferometry. Journal of Micromechanics and Microengineering, 15(1), 71. doi:10.1088/0960-1317/15/1/011.
  • 37. Xu, F., Ren, D., Shi, X., Li, C., Lu, W., Lu, L., ... & Yu, B. (2012). High-sensitivity Fabry– Perot interferometric pressure sensor based on a nanothick silver diaphragm. Optics letters, 37(2), 133-135. doi:10.1364/OL.37.000133.
  • 38. Yildiz, F. (2021). Comparison of Two Different Circular Diaphragm Models with Central Mass for MEMS Based FPI Pressure Sensor Performance Based on Sensitivity and Frequency Response. Sakarya University Journal of Science, 25(3), 619-628.
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ