DÜZENLİ DALGALAR ÜRETEN BİR SAYISAL DALGA TANKININ SPH YÖNTEMİ İLE MODELLENMESİ

Dalga üretici tanklar tarafından üretilen dalga sistemlerine, açık deniz yapıları (petrol çıkarma ve sismik araştırma platformlarının tasarımı) üzerine gelen yüklerin belirlenmesi, kıyı mühendisliği uygulamaları (liman tasarımı ve kıyı dalgalarının incelenmesi), gemi hareketlerinin analizleri ve yeni nesil dalga enerjisi çevirici sistemlerin tasarlanması gibi pek çok mühendislik alanında ihtiyaç duyulmaktadır. Bu alanlarla sınırlı olmamakla birlikte örnek olarak sözü edilen mühendislik problemlerinin sayısal analizlerini gerçekleştirebilecek kararlı ve gerçekçi bir sayısal hesaplama algoritması oluşturulması bu çalışmanın temel hedefidir. Böylece tasarım aşamasında ihtiyaç duyulan problem parametrelerinin hesaplamalı olarak elde edebilmesi ve gelecek araştırma-geliştirme çalışmalarına girdi sağlayacak bir altyapı oluşturulması amaçlanmaktadır. Bu çalışmada, belirtilen mühendislik problemlerinin çözümüne özgün bir katkı sunmak için parçacık temelli, hareketin Lagrange denklemleri aracılığıyla tanımlanmasına dayanan ve ağdan bağımsız bir yöntem olan İnterpolasyonlu Parçacık Hidrodinamiği (Smoothed Particle Hydrodynamics, SPH) olarak Türkçe’ye çevirebileceğimiz sayısal yaklaşım ile çözümlemeler yapılmıştır. Elde edilen sayısal sonuçlar birim dalga boyuna düşen toplam dalga enerjisi ve beklenen teorik dalga karakteristikleri ile karşılaştırılmıştır. Bu karşılaştırmalar ışığında, simülasyon sonuçlarının teorik verilerle yüksek doğruluk ve hassasiyette uyumlu olduğu gözlemlenmiştir.

Modeling of a Numerical Regular Wave Generator Tank by SPH Method

Wave systems produced by wave generator tanks is required in many engineering fields such as offshore structures (design of oil extraction and seismic research platforms), coastal engineering applications (port design and analysis of coastal waves), analysis of ship movements and design of next generation waveenergy converter systems. Establishing a stable and realistic numerical algorithm that can perform numerical analysis of the engineering problems mentioned but not limited to these fields is the main theme of this study. Therefore the problem parameters required in the design phase can be obtained by computational methods and an input data will be provided for the future research-development studies. In this work, particle-based, Lagrangian and mesh-free, namely, Smoothed Particle Hydrodynamics (SPH) method is used to provide a novel contribution to the solution of specified engineering problems. The obtained numerical results were compared with the theoretical total wave energy per unit wavelength and the expected theoretical wave profiles. In the light ofthese comparisons, it has been observed that the accuracy and precision of the simulation results are highly compatible with the theoretical data.

___

  • 1. Antuono, M., Colagrossi, A. ve Marrone, S. (2012) Numerical Diffusive Terms in Weakly-Compressible SPH Schemes, Computer Physics Communications, 183(12), 2570-2580. doi: 10.1016/j.cpc.2012.07.006
  • 2. Babarit, A. Hals, J., Muliawan, M.J., Kurniawan, A., Moan, T., ve Krokstad, J. (2012) Numerical benchmarking study of a selection of wave energy converters, Renewable Energy, 41, 44-63. doi:10.1016/j.renene.2011.10.002
  • 3. Batchelor, G.K. (1974) An introduction to fluid mechanics, Cambridge University Press.
  • 4. Bai, W. ve Taylor, RE. (2007) Numerical simülation of fully nonlinear regular and focused wave diffraction around a vertical cylinder using domain decomposition, Ocean Engineering, 29, 55-71. doi:10.1016/j.apor.2007.05.005
  • 5. Cleary, P.W. ve Monaghan, J.J. (2003) Conduction modelling using smoothed particle hydrodynamics, Journal of Computational Physics, 148, 227-264. doi: 10.1006/jcph.1998.6118
  • 6. Cummins, S. ve Rudman, M. (1999). An SPH Projection Method, Journal of Computational Physics, 2, 584-607. doi:10.1006/jcph.1999.6246
  • 7. Dong, R.R., Katz, J. ve Huang, T.T. (1997) On the structure of bow waves on a ship model, Journal of Fluid Mechanics, 346, 77-115. doi:10.1017/S0022112097005946
  • 8. Dutykh, D., Theodoros Katsaounis, T. ve Mitsotakis, D. (2011) Finite volume schemes for dispersive wave propagation and runup, Journal of Computational Physics, 230, 3035-3061. doi:10.1016/j.jcp.2011.01.003
  • 9. Faltinsen, O. ve Michelsen, F. C. (1974) Motions of Large Structures in Waves at Zero Froude Number, International Symposium on the Dynamics of Marine Vehicles and Structures in Waves, London, 91–106.
  • 10. Finnegan, W. ve Goggins, J. (2012) Numerical simülation of linear water waves and wave– structure interaction, Ocean Engineering, 43, 23-31. doi: 10.1016/j.oceaneng.2012.01.002
  • 11. Froud, W. (1861) On the Rolling of Ships, Trans. INA. 2, 180-227.
  • 12. Gotoh, H., Ikari, H., Memita, T. ve Sakai, T. (2005) Lagrangian Particle Method for simülation of Wave Overtopping on a Vertical Seawall, Japan Society of Civil Engineers and Coastal Engineering Committee, 47, 157-181. doi: 10.1142/S0578563405001239
  • 13. Havelock, T. H. (1942) The Damping of the Heaving and Pitching Motion of a Ship, Philosophical Magazine, 33(7), 666–673.
  • 14. Higuera, P., Lara, JL ve Losada, IJ. (2013) Realistic wave generation and active wave absorption for Navier–Stokes models Application to OpenFOAM®, Coastal Engineering, 71, 102-118. doi:10.1016/j.coastaleng.2012.07.002
  • 15. Hyun, J.M. (1975) Theory of Hinged Wavemakers of Finite Draft in Water of Constant Depth, Journal of Hydronautics, 10(1), 2-7. doi:10.2514/3.63046
  • 16. Izadparast, AD., Niedzwecki, JM. (2011) Estimating the potential of ocean wave power resources, Ocean Engineering, 38, 177-185. doi:10.1016/j.oceaneng.2010.10.010
  • 17. Kawasaki, K. (1999) Numerical simülation of breaking and post-breaking wave deformation process around a submerged breakwater, Coastal Engineering, 41(3-4), 201- 223. doi:10.1142/S0578563499000139
  • 18. Kleefsman, KMT., Fekken, G., Veldman, AEP., Iwanowski, B. ve Buchner. B. (2005) A Volume-of-Fluid based simülation method for wave impact problems, Journal of Computational Physicis, 206, 363-393. doi:10.1016/j.jcp.2004.12.007
  • 19. Kolukısa, D.C., Özbulut, M. ve Peşman, E. (2017) An Investigation on the Effects of Time Integration Schemes on Weakly Compressible SPH Method, VII. International Conference on Computational Methods in Marine Engineering, MARINE 2017, Nantes, France. doi:
  • 20. Krylov, A. N. (1896) A New Theory of Pitching of Ships on Waves and of the Stresses Produced by this Motion, Trans. INA, 37, 326 – 359.
  • 21. Lewis, F. M. (1929) The Inertia of Water Surrounding a Vibrating Ship, Trans SNAME, 37, 1–20.
  • 22. Li, Y ve Lin, M. (2012) Regular and irregular wave impacts on floating body, Ocean Engineering, 42, 93-101. doi:10.1016/j.oceaneng.2012.01.019
  • 23. Liang, X-f., Yang, J-m., Li, J.,Xiao, L-f ve Li, X. (2010) Numerical Simülation of Irregular Wave-Simülating Irregular Wave Train, Journal of Hydrodynamics Ser. B. 22(4), 537-545. doi:10.1016/S1001-6058(09)60086-X
  • 24. Lin, PZ. ve Liu, LF. (1998) A numerical study of breaking waves in the surf zone, Journal of Fluid Mechanics, 359, 239-264. doi:10.1017/S002211209700846X
  • 25. Liu, M.B. ve Liu, G.R. (2010) Smoothed Particle Hydrodynamics: An Overview and Recent Developments, Archives of Computational Methods in Engeneering, 17(1), 25-76. doi: 10.1007/s11831-010-9040-7
  • 26. Liu, M.B., Shao, J.R. ve Li, H.Q. (2014) An SPH model for free surface flows with moving rigid objects, International Journal for Numerical Methods in Fluids, 74, 684-697. doi: 10.1002/fld.3868
  • 27. Meringolo, D., Colagrossi, A., Aristodemo, F. ve Veltri, P. (2015) SPH Numerical Modeling of Wave-Perforated Breakwater Interaction, Coastal Engineering, 101, 48-68. doi:10.1016/j.coastaleng.2015.04.004
  • 28. Monaghan, J.J. (1994) Simülating free surface flow with SPH, Journal of Computational Physics, 110, 399–406. doi:10.1006/jcph.1994.1034
  • 29. Monaghan, J.J. (2005) Smoothed Particle Hydrodynamics, Reports on Progress in Physics, 68(8), 1703-1759. doi:10.1088/0034-4885/68/8/R01
  • 30. Monaghan, J.J. ve Kos, A. (1999) Solitary Waves on a Cretan Beach, Journal of Water Way, Port, Coastal and Ocean Engineering, 125(3), 145–154. doi:10.1061/(ASCE)0733- 950X
  • 31. Ning, DZ. ve Teng, B. (2007) Numerical simülation of fully nonlinear irregularwave tank in three dimension, International Journal of Numerical Methods in Fluids, 53, 1847-1862. doi: https://doi.org/10.1002/fld.1385
  • 32. Özbulut, M., Tofighi, N., Gören, Ö. ve Yildiz, M. (2015) On the SPH Modelling of Flow over Cylinder Beneath a Free-Surface, VI Conference on Computational Methods in Marine Engineering (MARINE), Rome, Italy.
  • 33. Özbulut, M., Tofighi, N., Gören, Ö. ve Yildiz, M. (2018) Investigation of Wave Characteristics in Oscillatory Motion of Rectangular Tanks, ASME Journal of Fluids Engineering, 140/041204, 1-11. doi: 10.1115/1.4038242
  • 34. Özbulut, M., Yildiz, M. ve Gören, Ö. (2014) A numerical investigation into the correction algorithms for SPH method in modeling violent free surface flows, International Journal of Mechanical Sciences, 79, 56-65. doi: 10.1016/j.ijmecsci.2013.11.021
  • 35. Padova, DD., Dalrymple, RA., ve Mossa, M. (2014) Analysis of the artificial viscosity in the smoothed particle hydrodynamics modelling of regular waves, Journal of Hydraulic Research, 52, 836-848. doi:10.1080/00221686.2014.932853
  • 36. Pascal, R., Payne, G., Theobold, CM., ve Bryden, I. (2012) Parametric models for the performance of wave energy converters, Applied Ocean Research, 30, 112-124. doi: 10.1016/j.apor.2012.06.003
  • 37. Sabuncu, T. (1983) Gemi Hareketleri, İstanbul Teknik Üniversitesi Kütüphanesi Yayınevi.
  • 38. Sakai, T., Mizutani, T., Tanaka, H. ve Tada, Y. (1986) Vortex Formation in Plunging Breaker, Proceedings of 20ᵗʰ ICCE, 711-723. doi: 10.9753/icce.v20.54
  • 39. Salvesen, N., Tuck, E. O. ve Faltinsen, O. (1970) Ship Motions and Sea Loads, Trans. SNAME, 78, 250–287.
  • 40. St. Denis M. ve Pierson, W. J. (1953) On the Motion of Ships in Confused Seas, Transactions of SNAME, 69, 280–357.
  • 41. Sun, H. ve Faltinsen, OM. (2006). Water impact of horizontal circular cylinders and cylindrical shells, Applied Ocean Research, 28(5),299-311. doi: 10.1016/j.apor.2007.02.002
  • 42. Siegel, SH., Fagley C. ve Nowlin, S. (2012) Experimental wave termination in a 2D wave tunnel using a cycloidal wave energy converter, Applied Ocean Research, 38, 92-99. doi: 10.1016/j.apor.2012.07.003
  • 43. Siegel, SH., Jeans, T., ve McLaughlin, TE. (2011) Deep ocean wave energy conversion using a cycloidal turbine, Applied Ocean Research, 30,110-119. doi:10.1016/j.apor.2011.01.004
  • 44. Tasai, F. (1960) On the Damping Force and Added Mass of Ships Heaving and Pitching, Reports of the Research. Institute for Applied Mechanics. Kyushu University, 7(26), 131- 152. doi:10.2534/jjasnaoe1952.1959.47
  • 45. Ueno, M., Miyazaki, H., Taguchi, H., Kitagawa, Y. ve Tsukada, Y. (2013) Model experiment reproducing an incident of fast ferry, Journal of Marine Science and Technology, 18, 192-202. doi:10.1007/s00773-012-0198-6
  • 46. Ursell, F. (1949) On the Heaving Motion of a Circular Cylinder on the Surface of a Fluid, Quarterly Journal of Mechanical and Applied Maths, 2, 218–231.
  • 47. Wang, CZ. ve Wu, GX. (2006). An unstructured-mesh-based finite element simülation of wave interactions with non-wall-sided bodies, Journal of Fluids and Structures, 22, 441-461. doi:10.1016/j.jfluidstructs.2005.12.005
  • 48. Watanabe Y. ve Saeki, H. (1999) Numerical study of the hydrodynamics of regular waves breaking over a sloping beach, Coastal Engineering, 41(3-4), 281-301. doi:10.1016/j.euromechflu.2011.01.001
  • 49. Westphalen, J., Greaves, DM., Williams, CJK., Hunt-Raby, AJ. ve Zang, J. (2012) Focused waves and wave–structure interaction in a numerical wave tank, Ocean Engineering, 45, 9-21. doi:10.1016/j.oceaneng.2011.12.016
  • 50. Wilson, W.R., Carrica, P.M. ve Stern, F. (2007) Simülation of ship breaking bow waves and induced vortices and scars, International Journal for Numerical Methods in Fluids, 54, 419-451. doi:10.1002/fld.1406
  • 51. Yin, J., Sun, J-w. ve Jiao, Z-f. (2015) A TVD-WAF-based hybrid finite volume and finite difference scheme for nonlinearly dispersive wave equations, Water Science and Engineering, 8(3), 239-247. doi:10.1016/j.wse.2015.06.003
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

ZAMAN PENCERELİ BÖLÜNMÜŞ-DAĞITIMLI ARAÇ ROTALAMA İLE AFET SONRASI YARDIM MALZEMESİ DAĞITIMI PLANLAMASI

Merve KÖSE KÜÇÜK, Fatih ÇAVDUR

Ti6Al4V MALZEMESİNİN TORNALAMA İŞLEMİNDE ÖZGÜL KESME ENERJİSİ VE YÜZEY PÜRÜZLÜĞÜNÜN İNCELENMESİVE YAPAY SİNİR AĞLARI TEMELLİ TAHMİN MODELİ GELİŞTİRİLMESİ

Gökberk SERİN, Müge KAHYA, Murat Ahmet ÖZBAYOĞLU, Hakkı Özgür ÜNVER

EFFECT OF HEAT TREATMENT AND CROSS SECTIONON THE CRASHWORTHINESS OF 51CRV4 SPRING STEEL

Çiğdem DİNDAR KANBEŞ, Hüseyin BEYTÜT, Selçuk KARAGÖZ

Kuru Tip Transformatörlerin Dış Ortamlarda Kullanılabilmesi İçin Deneysel Ve Simülasyon Ile Termal Analizine Yeni Yaklaşım

Murat TÖREN, Mehmet Mesut ÇELEBİ

BİYOLOJİK OLARAK ARITILMIŞ TEKSTİL ENDÜSTRİSİ ATIKSULARININ LABORATUVAR ÖLÇEKLİ ÇAPRAZ AKIŞ SİSTEMİNDE TERS OSMOZ MEMBRANLARI KULLANILARAK GERİ KAZANIMI

Adem YURTSEVER, Deniz UÇAR, Erkan ŞAHİNKAYA

A DISCOVERY-BASED CASE STUDY TO TEACH THE CONCEPTS OF COMPUTATIONAL SIMULATION AND MEASUREMENT UNCERTAINTY IN HEAT TRANSFER

Mehmet Ekrem ÇAKMAK, Çağkan TAYLAN

Routh-Hurwitz Kriteri Tabanlı Sistem Kararlılık Yazılım Aracı

Fahri VATANSEVER, Metin HATUN

ARITMA ÇAMURLARININ TARIMSAL AMAÇLI KULLANIMI: TOPRAKTAKİ AZOT PROSESLERİNDE MEYDANA GELEN DEĞİŞİMLER

Esra DEMİR YANCAR, Fatma Olcay ŞAĞBAN TOPAÇ

DEĞİŞİK KAYNAK ELEKTROTLARI KULLANILARAK YAPILAN DİRENÇ NOKTA KAYNAKLI AISI 304 PASLANMAZ ÇELİK SACLARIN KAYNAK İZİ GÖRÜNTÜSÜ VE KAYNAK PARAMETRELERİNİN MEKANİK ÖZELLİKLERE ETKİSİ

Yaşar Hüseyin ONGANLAR, Kadir ÇAVDAR, Umut O. ŞAHİN, F. Yıldız ÇAVDAR

YAPILARDA YAYGIN KULLANILAN ISI YALITIM MALZEMELERİNİN PERFORMANS ÖZELLİKLERİNİN DUVAR KESİTLERİ ÜZERİNDE DEĞERLENDİRİLMESİ

Nazife ÖZER, Seden ACUN ÖZGÜNLER