ÇOK FAZLI SİSTEMLERDE HÜCRE AYRIŞTIRILMASI

Bu çalışma, çok fazlı polimer sistemlerinde, nanoparçacık ihtiva eden insan servikal kanser HeLa hücrelerinin, hücreler arasındaki yoğunluk farkına dayanılarak ayrıştırılması üzerinedir. Sulu çok fazlı sistemler, suda çözünen polimer ve/veya sürfaktanların çeşitli kombinasyonlarının karıştırılmasını takiben faz ayrışmasıyla oluşur. Sistemin fazları yoğunluklarına göre üst üste dizilirler ve birbirine komşu her iki fazın arasında yoğunluk-adımı olarak hareket edebilen bir interfaz bulunur. Bu interfaz, nesneleri yakalayabilecek bir bariyer görevi görür ve faz ayrışmasıyla oluştuğu için kararlıdır. Bu sistemler hazırlandıktan ve ayrıştırma için eniyilendikten sonra, hücrelerin sisteme eklenmesi ve sentrifügasyon yardımı ile ayrıştırma sağlanır. Bu çalışmada, altın nanoparçacıklarıyla kontrollü şekilde etkileşen HeLa hücrelerinin, yoğunluklarındaki değişime istinaden, sulu çok fazlı sistemlerde ayrıştırılmaları gösterilmiştir.

Cell Separation with Aqueous Multiphase Systems

This study investigates the use of multiphase systems for density-based separation of cervical cancer HeLa cells that contain nanoparticles. Aqueous multiphase systems (MuPSs) are prepared by mixing the various combinations of water-soluble polymers and/or surfactants followed by phase separation. The phases of the system are sorted according to their density and in between neighboring phases there exists an interface that can act as a step-in-density. This interface is also thermodynamically stable since it is formed through phase separation. Subsequent to preparation and optimization of these systems, cells are added to the systems and separation of cells is achieved through centrifugation. In this work, the separation of HeLa cells that interacted with gold nanoparticles, hence experienced a change in their density, was demonstrated.

___

  • Akbulut Halatcı, O., Mace, C. R., Kumar, A. A., Nie, Z., ve Whitesides, G. M. (2012) Multiphase Systems Having Multiple Phase Properties. U.S. Patent Application No. PCT/US11/48675.
  • Chauhan, G., Chopra, V., Tyagi, A., Rath, G., Sharma, R. K. ve Goyal, A. K. (2017) Gold Nanoparticles Composite-Folic Acid Conjugated Graphene Oxide Nanohybrids For targeted Chemo-Thermal Cancer Ablation: In Vitro Screening and In Vivo Studies, European Journal of Pharmaceutical Sciences, 96, 351-361. doi: 10.1016/j.ejps.2016.10.011.
  • Chithrani, B. D., Ghazani, A. A., ve Chan, W. C. W. (2006) Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Letters, 6(4), 662–668. doi: 10.1021/nl052396o.
  • Cooper, G. M. (2000) The Cell: A Molecular Approach, Sinauer Associates, US. ISBN-10: 0-87893-106-6.
  • Everson, L. K., Buell, D. N., ve Rogentine, G. N. Jr. (1973) Separation of Human Lymphoid Cells into G1, S, and G2 Cell Cycle Populations by the Use of a Velocity Sedimentation Technique, The Journal of Experimental Medicine, 137(2), 343– 358. doi: 10.1084/jem.137.2.343.
  • Fratoddi, I., Venditti, I., Cametti, C. ve Russo, M. V. (2015) The puzzle of toxicity of gold nanoparticles. The case-study of HeLa cells, Toxicology Research, 4(4), 796-800. doi: 10.1039/C4TX00168K.
  • Geha, R. S., Rosen, F. S., ve Merler, E. (1973) Identification and Characterization of Subpopulations of Lymphocytes in Human Peripheral Blood After Fractionation on Discontinuous Gradients of Albumin, The Journal of Clinical Investigation, 52(7), 1726-1734. doi: 10.1172/JCI107354.
  • Haiss, W., Thanh, N. T., Aveyard, J., ve Fernig, D. G. (2007) Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra, Analytical Chemistry, 79(11),4215-4221. doi: 10.1021/ac0702084.
  • Hartwell, L. H. (1970) Periodic density fluctuation during the yeast cell cycle and the selection of synchronous cultures, Journal of Bacteriology, 104(3), 1280-1285. PMC248288.
  • Henderson, B., ve Pockley, A. G. (2012) Cellular Trafficking of Cell Stress Proteins in Health and Disease, Springer Publishing. ISBN: 978-94-007-4740-1.
  • Hu, K., Li, F., Zhang, Z. ve Liang, F. (2017) Synthesis of Two Potential Anticancer Copper (II) Complex Drugs: Their Crystal Structure, Human Serum Albumin. DNA Binding and Anticancer Mechanism, New Journal of Chemistry, doi: 10.1039/C6NJ02483A.
  • Khan, J. A., Pillai, B., Das, T. P., Singh, Y. ve Maiti, S. (2007) Molecular Effects of Uptake of Gold Nanoparticles in HeLa Cells, ChemBioChem, 8, 1237-1240. doi: 10.1002/cbic.200700165.
  • Kimling, J., Maier, M., Oken, B., Kotaidis, V., Ballot, H., ve Plech, A. (2006) Turkevich Method for Gold Nanoparticle Synthesis Revisited, Journal of Physical Chemistry B., 110(32), 15700–15707. doi: 10.1021/jp061667w.
  • Kumar, A. A., Patton, M. R., Hennek, J. W., Lee, S., D’Alesio-Spina, G., Yang,X., Kanter, J., Shevkoplyas, S.,Brugnara, C., ve Whitesides, G. M. (2014) Density-based separation in multiphase systems provides a simple method to identify sickle cell disease, Proceedings of the National Academy of Sciences,111(41), 14864-14869. doi: 10.1073/pnas.1414739111.
  • Lee, J., Lilly, G. D., Podsiadlo, P., ve Kotov, N. A. (2009) In vitro Toxicity Testing of Nanoparticles in 3D Cell Culture, Small, 5(10), 1213-1221. doi: 10.1002/smll.200801788
  • Liang, X., Michelsen, M. L., Kontogeorgis, G. M. (2016) A density gradient theory based method for surface tension calculations, Fluid Phase Equilibria, 428(25), 153-163. doi: 10.1016/j.fluid.2016.06.017.
  • Liu, X., Atwater, M., Wang, J., ve Huo, Q. (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands, Colloids and Surfaces B: Biointerfaces, 58(1), 3-7. doi: 10.1016/j.colsurfb.2006.08.005.
  • Mace, C. R., Akbulut Halatcı, O., Kumar, A. A., Shapiro, N. D. ve Whitesides, G. M. (2012a) Multiphase Systems for Analysis of Solid Materials, WO/024691 (HU4263).
  • Mace, C. R., Akbulut, O., Kumar, A. A., Shapiro, N. D., Derda, R., Patton, M. R., ve Whitesides, G. M. (2012) Aqueous Multiphase Systems of Polymers and Surfactants Provide Self-assembling Gradients in Density, Journal of American Chemical Society, 134(22), 9094-9097. doi:10.1021/ja303183z.
  • Mahmoudi, M., Saedi, S., Shokrgozer, M., Azadmanesh, K., Hassanlou, M., Kalhor, H., Burtea, C., Rothen, B., Laurent, S., Sheibani, S., ve Vali, H. (2012) Cell vision: complementary factor of protein corona in nanotoxicology, Nanoscale, 4, 5461–5468. doi: 10.1039/c2nr31185b.
  • Markx, G. H., Talary, M. S., ve Pethin, R. (1994) Separation of viable and non-viable yeast using dielectrophoresis, Journal of Biotechnology, 32(1), 29-37. doi: 10.1016/0168-1656(94)90117-1.
  • Mortimer, M., Petersen, E. J. , Buchholz, B. A. ve Holden, P. A. (2016) Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation, Nanomaterials, 6(10), 181. doi: 10.3390/nano6100181.
  • Pappas, D., ve Wang, K. (2007) Cellular Separations: A Review of New Challenges in Analytical Chemistry, Analytica Chimica Acta, 601(1), 26-35. doi: 10.1016/j.aca.2007.08.033.
  • Ren, T., Yu, S., Mao, Z., ve Gao, C. (2015) A complementary density gradient of zwitterionic polymer brushes and NCAM peptides for selectively controlling directional migration of Schwann cells, Biomaterials, 56, 58-67. doi: 10.1016/j.biomaterials.2015.03.052.
  • Rothstein, E. L., Hartzell, R. W., Manson, Jr. L. A. ve Kritchevsky, D. (2006) Effects of D2O on Cellular Components of Mammalian Cells Grown in Tissue Culture, Annals of New York Academy of Sciences, 84(16), 721-726. doi: 10.1111/j.1749-6632.1960.tb39103.x.
  • Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H., Kashiwagi, S., Fukami, K., Miyata, T., Miyoshi, H., Imamura, T., Ogawa, M., Masai, H., ve Miyawaki, A. (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression, Cell, 132, 487-498. doi: 10.1016/j.cell.2007.12.033.
  • Shang, L., Nienhaus, K., ve Nienhaus, G. U. (2014) Engineered nanoparticles interacting with cells: size matters,Journal of Nanobiotechnology, 12, 3–11. doi: 10.1186/1477-3155-12-5.
  • Shortman, K., Haskill, J. S., Szenberg, A., ve Legge, D. G. (1967) Density Distribution Analysis of Lymphocyte Populations, Nature, 216(5121), 1227-1229. PMC1455948.
  • Stadler, A. M., Digel, I., Artmann, G. M., Embs, J. P., Zaccai, G., ve Büldt, G. (2008) Hemoglobin Dynamics in Red Blood Cells: Correlation to Body Temperature, Biophysics Journal, 95(11), 5449-5461. doi: 10.1529/biophysj.108.138040.
  • Strober, W. (2001) Trypan Blue Exclusion Test of Cell Viability, Current Protocols in Immunology, Appendix3B, doi: 10.1002/0471142735.ima03bs21.
  • Stubblefield, E., ve Mueller, GC. (1960) Effects of Sodium Chloride Concentration on Growth, Biochemical Composition, and Metobolism of HeLa cells, Cancer Research, 20, 1646-1655. Print ISSN: 0008-5472.
  • Sui, X., Luo, C., Wang, C., Zhang, F., Zhang, J. ve Guo, S. (2016) Graphene Quantum Dots Enhance Anticancer Activity of Cisplatin via Increasing Its Cellular and Nuclear Uptake, Nanomedicine: Nanotechnology, Biology and Medicine, 12(7), 1997-2006. doi: 10.1016/j.nano.2016.03.010
  • Waber, J., ve Sakai, W. S. (1974) The Effect of Growth in 99.8% Deuterium Oxide on the Ultrastructure of Winter Rye, Plant Physiology, 53, 128-130. PMC541348