ÇELİK YAPILARDA KULLANILAN DİYAGONAL ÇELİK ÇAPRAZLARIN YAPAY ARI KOLONİ ALGORİTMASI İLE OPTİMİZASYONU

Diyagonal çelik çapraz (DÇÇ) sistemler, mevcut yapının deprem performansının iyileştirilmesinde veya yeni yapının depreme dayanıklı olarak tasarlanmasında yaygın olarak kullanılan yöntemlerden birisidir. Bu sistemler yapının yatay yük taşıma kapasitesini arttırır ve yapının yanal rijitliğine katkı sağlamaktır. Çelik diyagonal çaprazların yapı sistemindeki yerleşimi, yapı sistemin performansını etkileyen önemli etkenlerden birisidir. Bu çalışma, çelik çaprazların yerleşimdeki optimum dağılımın belirlenmesi için yapay arı koloni optimizasyon tekniği kullanılarak yeni bir algoritma sunulmuştur. Tepe deplasmanına ve taban kesme kuvvetine bağlı transfer fonksiyonları amaç fonksiyonu olarak seçilmiştir. Buradaki temel amaç, belirlenen kısıtlar altında amaç fonksiyonlarının minimize edilmesidir. Tasarım değişkeni olarak her kata yerleştirilen çelik çaprazların rijitlikleri seçilmiştir. Ayrıca, çelik çaprazların toplam rijitliği, optimizasyon probleminin aktif kısıtlı olarak belirlenmiştir. Hazırlanan optimizasyon algoritmasının performansının test edilmesi amacıyla 20 katlı çelik yapı modeli oluşturulmuş ve El Centro depremi kaydı kullanılarak zaman tanım alanında dinamik analiz yapılmıştır. Yapay arı koloni algoritması kullanılarak elde edilen optimum çelik çapraz yerleşimi, düzgün dağılım ile karşılaştırılmıştır. Bu bulgular göstermiştir ki, tasarlanan algoritma ile belirlenen optimum diyagonal çelik çapraz dağılımı, her bir amaç fonksiyonu için tatmin edici sonuçlar vermiştir.

Optimizing Diagonal Steel Braces Used in Steel Structures via Artificial Bee Colony Algorithm

Steel diagonal braces (SDB) systems, are one of widely used methods for improving the seismic performance of existing structures or new construction of earthquake-resistant design. These systems contribute to the stiffness of the structure as well as increased lateral load carrying capacity of the structure. Placement on the steel diagonal braces is one of the significant factors affecting the performance of the system. In this study, a new algorithm to find the optimal distribution of SDB using artificial bee colony optimization technique is presented. The objective functions are chosen as the transfer function amplitude of the top displacement and the transfer function amplitude of the base shear force. The main purpose is to minimize the objective function under specific constraints. Stiffness parameters of steel braces located on each floor is chosen as the design variables. Additionally, the sum of the stiffness parameter of the SDB is accepted as an active constraint. In order to test the response the performance of results obtained from ABC, 20 story steel braced building is modeled and analyzed using time history methods under the El-Centro earthquake. Optimum SDB location obtained using artificial bee colony algorithm is compared to uniform distribution of SDB’s. The findings show that, the optimum SDB distribution give satisfactory results for each of the objective functions.

___

  • Aydin, E. and Boduroglu, M. H. (2008) Optimal placement of steel diagonal braces for upgrading the seismic capacity of the existing structures and its comparison with optimal dampers, J.Constr.SteelRes., 64(1), 72-86. doi: 10.1016/j.jcsr.2007.04.005
  • Aydin, E., Boduroglu, M. H. and Guney, D. (2007) Optimal damper distribution for seismic rehabilitation of planar building structures, Eng. Struct., 29(2), 176-185. doi: 10.1016/j.engstruct.2006.04.016
  • Aydin , E., Sonmez, M. and Karabork, T. (2015). Optimal placement of elastic steel diagonal braces using artificial bee colony algorithm, Steel and Composite Structures, 19(2), 349-368. doi:10.12989/scs.2015.19.2.349
  • Bansal, J. C., Sharma, H. and Jadon, S. S. (2013) Artificial bee colony algorithm: A survey, Int. J. Adv. Intell. Paradigms, 5(1-2), 123-159. doi: 10.1504/IJAIP.2013.054681
  • Bartera, F. and Giacchetti, R. (2003) Steel dissipating braces for upgrading existing building frames, J.Constr. Steel Res., 60(3-5), 751-769. doi: 10.1016/S0143-974X(03)00141
  • Cimellaro, G. P. (2007) Simultaneous stiffness-damping optimization of structures with respect to acceleration displacement and base shear, Eng. Struct., 29(11), 2853-2870. doi: 10.1016/j.engstruct.2007.01.001
  • Colunga, A. T. and Vergara, A. A. (1997) Comparative study on the seismic retrofit of a mid-rise steel building: steel bracing vs. energy dissipation, Earthq. Eng. Struct. D., 26(6), 637-655. doi: 10.1002/(SICI)1096-9845(199706)26:6
  • Downs, R. E., Hjelmstat, K. D. and Foutch, D. A. (1991). Evaluation of two RC building retrofit with steel bracing, IL: Department of Civil Engineering, University of Illinois at.
  • Frisch, V. K. (1967) Dance Language and Orientation of Bees. Cambridge: Harvard University Press. İsbn: 9780674418776
  • Gorgulu, T., Tama, Y. S., Yilmaz, S. and Kaplan, H. (2012) Strengthening of reinforced concrete structures with external steel shear walls, J. Constr. Steel Res., 70, 226-235. doi: 10.1016/j.jcsr.2011.08.010
  • Karaboga, D. (2005) An idea based on honey bee swarm for numerical optimization, Kayseri: Computer Engineering Department: Computer Engineering Department, Erciyes University.
  • Karaboga, D. and Akay, B. (2009) Survey: Algorithms simulating bee swarm intelligence, Artif. Intell.Rev., 31, 61-85. doi: 10.1007/s10462-009-9127-4
  • Karaboga, D. and Basturk, B. (2008) On the performance of artificial bee Colony (ABC), Appl. Soft.Comp., 8, 687-697. doi: 10.1016/j.asoc.2007.05.007
  • Karaboga, D., Gorkemli, B., Ozturk, C. and Karaboga, N. (2014) A comprehensive survey: Artificial bee colony (ABC) algorithm and applications, Artif. Intell. Rev., 42, 21-57. doi: 10.1007/s10462-012-9328-0
  • Kawamata, S. and Masaki, Q. (1980) Strengthening effect of eccentric steel diagonal braces to existing RC frames, Proceedings of the 7th World Conference on Earthquake Engineering, İstanbul, Türkiye.
  • Kennedy, J., Eberhart, R. C. and Shi, Y. (2001) Swarm Intelligence, San Francisco: Morgan Kaufmann Publishers. Isbn:1-55860-595-9
  • Lee, K. S. and Geem, Z. W. (2004) A new structural optimization method based on the harmony search algorithm, Comput. Struct., 82(9-10), 781-798. doi: 10.1016/j.compstruc.2004.01.002
  • Lemmens, N., Jong, S., Tuyls, K. and Nowe, A. (2007) Bee behaviour in multi-agent systems: A bee foraging algorithm, Proceedings of the 7th ALAMAS Symposium, The Hague.
  • Maheri, M. R. and Sahebi, A. (1997) Use of steel bracing in reinforced concrete frames, Eng. Struct., 19(12), 1018-1024. doi: 10.1016/S0141-0296(97)00041-2
  • Miranda, E. (1991) Seismic evaluation and upgrading of existing structures, CA, USA: University of California at Berkeley.
  • Mitchell, D. and Dandurand, A. (1988) Repair and upgrading of concrete structures in Mexico City after the 1985 earthquake, Can. J. Civil Eng., 15(6), 1052-1066. doi: 10.1139/l88-138
  • Pham, D. T., Granbarzadeh, A., Koc, E. and Otri, S. R. (2006) The bee algorithm– A novel tool for complex optimization problems, Proceedings of Intelligent Production Machines and Systems (IPROMS). Cardiff.
  • Sonmez, M. (2011a) Artificial bee colony algorithm for optimization of truss structures, Appl. Soft.Comput. J., 11(2), 2406-2418. doi: 10.1016/j.asoc.2010.09.003
  • Sonmez, M. (2011b) Discrete optimum design of truss structures using artificial bee colony algorithm, Struct. Multidisc. Optim., 43(1), 85-97. doi: 10.1007/s00158-010-0551-5
  • Takewaki, I. (1999) Displacement-acceleration control via stiffness-damping collaboration, Earthq. Eng. Struct. D., 28(12), 1567-1585. doi: 10.1002/(SICI)1096-9845(199912)28:12
  • Takewaki, I. (2000) Optimum damper placement for planar building frames using transfer functions, Struct. Mult.-Disp. Optim., 20(4), 280-287. doi: 10.1007/s001580050158
  • Turker, T. and Bayraktar, A. (2011) Experimental and numerical investigation of brace configuration effects on steel structures, J. Construct. Steel Res., 67(5), 854-865. doi: 10.1016/j.jcsr.2010.12.008
  • Valle, C. E. (1980) Some lessons from the March 14, 1979 earthquake in Mexico City, Proceedings of 7th World Conference on Earthquake Engineering, İstanbul.
  • Valle, C. E., Foutch, D. A., Hjelmstad, K. D., Gutierrez, E. F. and Colunga, A. T. (1988) Seismic retrofit of RC building: A case study, Proceedings of 9th World Conference on Earthquake Engineering, Kyoto,Tokyo.
  • Wang, D. (2006) Optimal design of structural support positions for minimizing maximal bending moment, Finite Elem. Anal. Des., 43, 95-102. doi: 10.1016/j.finel.2006.07.004
  • Yamamato, Y. and Aoyama, H. (1987) Seismic behaviour of existing RC frame strengthened with retrofitting steel elements, Proceedings of U.S.-Japan Seminar on Repair and Retrofit of Existing Structures, Tsukuba, Japan.
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ