BURSA ATMOSFERİNDEKİ POLİSİKLİK AROMATİK HİDROKARBON KONSANTRASYONLARI VE MUHTEMEL KAYNAKLARININ BELİRLENMESİ

Bu çalışmada Bursa’da 6 farklı noktada pasif hava örnekleyici kullanarak bir yıl boyunca dış ortam havasındaki PAH’ların konsantrasyon değerleri ve muhtemel kaynaklarının belirlenmesi amaçlanmıştır. En düşük konsantrasyon değeri arka plan olarak nitelendirilen Keles örnekleme noktasında ölçülmüş iken, en yüksek konsantrasyon değeri Sanayi/Tarım olarak nitelendirilen Hasanağa örnekleme noktasında ölçülmüştür. Elde edilen konsantrasyon değerleri Bursa’da daha önceki yıllarda yapılan çalışmalardan yüksek bulunmuştur. Bunun nedeninin yıllara göre sanayinin ve nüfusun artmasına bağlı olarak atmosferik PAH girdilerinin artması olduğu düşünülmüştür. PAH’ların muhtemel kaynaklarının belirlenmesinde ise literatürde sıklıkla kullanılan yöntem olan moleküler tanı oranlarından yararlanılmıştır. Elde edilen moleküler tanı oranlarına göre Bursa atmosferindeki PAH’ların en büyük kaynaklarının fosil yakıtların yanması ile trafik olduğu belirlenmiştir. Ayrıca Bursa’da önceki yıllarda yapılan çalışmalarda belirlenen PAH kaynakları ile bu çalışmada belirlenen PAH kaynakları arasında benzerlik bulunmuştur.  

Determination of Polycyclic Aromatic Hydrocarbon Concentrations and Possible Sources in Bursa Atmosphere

In this study, it was aimed to determine the concentration values and possible sources of PAHs in the outdoor air for a year by using passive air samplers at 6 different points in Bursa. While the lowest concentration value was measured at the Keles sampling point, which is described as the background, the highest concentration value was measured at the Hasanağa sampling point, which is described as Industry/Agriculture. The obtained concentration values were found to be higher than the studies conducted in Bursa in previous years. The reason for this was thought to be the increase in atmospheric PAH inputs due to the increase in industry and population over the years. Molecular diagnosis rates, which is the method frequently used in the literature, were used to determine the possible sources of PAHs. According to the obtained molecular diagnosis rates, it was determined that the biggest sources of PAHs in Bursa atmosphere are combustion of fossil fuels and traffic. In addition, a similarity was found between the PAH sources determined in previous studies in Bursa and the PAH sources determined in this study.

___

  • 1. Akyüz, M. ve Çabuk, H. (2008) Particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey, Science of the Total Environment, 05, 2–10. doi.org/10.1016/j.scitotenv.2008.07.026
  • 2. Ambade, B., Sethi, S.S., Giri, B., Biswas, J.K. ve Bauddh, K. (2022) Characterization, Behavior, and Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Estuary Sediments, Bulletin of Environmental Contamination and Toxicology, 108, 243–252. doi.org/10.1007/s00128-021-03393-3
  • 3. Aydin, Y.M., Kara, M., Dumanoglu, Y., Odabasi, M. ve Elbir, T. (2014) Source apportionment of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in ambient air of an industrial region in Turkey, Atmospheric Environment, 97, 271–285. doi.org/10.1016/j.atmosenv.2014.08.032
  • 4. Boonyatumanond, R., Murakami, M., Wattayakorn, G., Togo, A. ve Takada, H. (2007) Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian mega-city, Bangkok, Thailand, Science of the Total Environment, 384, 420–432. doi.org/10.1016/j.scitotenv.2007.06.046
  • 5. Bozlaker, A., Muezzinoglu, A. ve Odabasi, M. (2008) Atmospheric concentrations , dry deposition and air – soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey, Journal of the Hazardous Materials, 153, 1093–1102. doi.org/10.1016/j.jhazmat.2007.09.064
  • 6. Cetin, B., Yurdakul, S., Keles, M., Celik, I., Ozturk, F. ve Dogan, C. (2017) Atmospheric concentrations, distributions and air-soil exchange tendencies of PAHs and PCBs in a heavily industrialized area in Kocaeli, Turkey, Chemosphere, 183, 69–79. doi.org/10.1016/j.chemosphere.2017.05.103
  • 7. Chun, M.Y. (2011) Relationship between PAHs Concentrations in Ambient Air and Deposited on Pine Needles, Environmental Health and Toxicology, 26, e2011004. doi.org/10.5620/eht.2011.26.e2011004
  • 8. Esen, F. ve Kayıkçı, G. (2018) Determination of polyaromatic hydrocarbons (PAHs) in indoor and outdoor air samples in Bursa, Journal of the Faculty of Engineering and Architecture of Gazi University, 33, 1531–1541. doi.org/10.17341/gazimmfd.416449
  • 9. Esen, F., Tasdemir, Y. ve Vardar, N. (2008) Atmospheric concentrations of PAHs, their possible sources and gas-to-particle partitioning at a residential site of Bursa, Turkey, Atmospheric Research, 88, 243–255. doi.org/10.1016/j.atmosres.2007.11.022
  • 10. Fakinle, B.S., Odekanle, E.L., Ike-Ojukwu, C., Sonibare, O.O., Falowo, O.A., Olubiyo, F.W., Oke, D.O. ve Aremu, C.O. (2022) Quantification and health impact assessment of polycyclic aromatic hydrocarbons (PAHs) emissions from crop residue combustion, Heliyon, 8, e09113. doi.org/10.1016/j.heliyon.2022.e09113
  • 11. Hanedar, A., Alp, K., Kaynak, B., Baek, J., Avsar, E. ve Odman, M.T. (2011) Concentrations and sources of PAHs at three stations in Istanbul, Turkey, Atmospheric Research, 99, 391–399. doi.org/10.1016/j.atmosres.2010.11.017
  • 12. Hanedar, A., Alp, K., Kaynak, ve Avsar, E. (2014) Toxicity evaluation and source apportionment of polycyclic aromatic hydrocarbons (PAHs) at three stations in Istanbul, Turkey, Science of the Total Environment, 488, 437-466. https://doi.org/10.1016/j.scitotenv.2013.11.123
  • 13. Hassan, S.K. ve Khoder, M.I, (2012) Gas – particle concentration, distribution, and health risk assessment of polycyclic aromatic hydrocarbons at a traffic area of Giza, Egypt, Environmental Monitoring and Assessment, 184, 3593–3612. doi.org/10.1007/s10661-011-2210-8
  • 14. Herkert, N.J., Martinez, A. ve Hornbuckle, K.C. (2016) A Model Using Local Weather Data to Determine the Effective Sampling Volume for PCB Congeners Collected on Passive Air Samplers, Environmental Science & Technology, 50, 6690–6697. doi.org/10.1021/acs.est.6b00319
  • 15. Katsoyiannis, A. ve Breivik, K. (2014) Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool, Environmental Pollution, 184, 488–494. doi.org/10.1016/j.envpol.2013.09.028
  • 16. Katsoyiannis, A., Terzi, E. ve Cai, Q. (2007) On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate?, Chemosphere, 69, 1337– 1339. doi.org/10.1016/j.chemosphere.2007.05.084
  • 17. Kukkar, D., Kukkar, P., Younis, S.A. ve Kim, K.H. (2022) The use of nanophotocatalysts for the effective mitigation of polycyclic aromatic hydrocarbons in aqueous phase, Journal of Cleaner Production, 333, 130026. doi.org/10.1016/j.jclepro.2021.130026
  • 18. Lourenço, R.A., Taniguchi, S., da Silva, J., Gallotta, F.D.C. ve Bícego, M.C. (2021) Polycyclic aromatic hydrocarbons in marine mammals: A review and synthesis, Marine Pollution Bulletin, 171. doi.org/10.1016/j.marpolbul.2021.112699
  • 19. Mandalakis, M., Gustafsson, Ö., Alsberg, T., Egebäck, A.L., Reddy, C.M., Xu, L., Klanova, J., Holoubek, I. ve Stephanou, E.G. (2005) Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three european background sites, Environmental Science & Technology, 39, 2976–2982. doi.org/10.1021/es048184v
  • 20. Okedere, O.B. ve Elehinafe, F.B. (2022) Occurrence of polycyclic aromatic hydrocarbons in Nigeria’s environment: A review, Scientific African, 16, e01144. doi.org/10.1016/j.sciaf.2022.e01144
  • 21. Okuda, T., Kumata, H., Zakaria, M.P., Naraoka, H., Ishiwatari, R. ve Takada, H. (2002) Source identification of Malaysian atmospheric polycyclic aromatic hydrocarbons nearby forest fires using molecular and isotopic compositions, Atmospheric Environment, 36, 611–618. doi.org/10.1016/S1352-2310(01)00506-4
  • 22. Pozo, K., Oyola, G., Estellano, V.H., Harner, T., Rudolph, A., Prybilova, P., Kukucka, P., Audi, O., Klánová, J., Metzdorff, A. ve Focardi, S. (2017) Persistent Organic Pollutants (POPs) in the atmosphere of three Chilean cities using passive air samplers, Science of the Total Environment, 586, 107–114. doi.org/10.1016/j.scitotenv.2016.11.054
  • 23. Saha, M., Mizukawa, K., Murakami, M. ve Takada, H. (2009) Sources of sedimentary PAHs in tropical Asian waters : Differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance, Marine Pollution Bulletin, 58, 189–200. doi.org/10.1016/j.marpolbul.2008.04.049
  • 24. Sari, M.F., Córdova Del Águila, D.A., Tasdemir, Y. ve Esen, F. (2020a) Atmospheric concentration, source identification, and health risk assessment of persistent organic pollutants (POPs) in two countries: Peru and Turkey, Environmental Monitoring Assessment, 192. doi.org/10.1007/s10661-020-08604-8
  • 25. Sari, M.F. ve Esen, F. (2022) Atmospheric concentration, spatial variations, and source identification of persistent organic pollutants in urban and semi-urban areas using passive air samplers in Bursa, Turkey, Environmental Science and Pollution Research, doi.org/10.1007/s11356-021-17987-1
  • 26. Sari, M.F., Esen, F. ve Tasdemir, Y. (2020b) Biomonitoring and Source Identification of Polycyclic Aromatic Hydrocarbons (PAHs) Using Pine Tree Components from Three Different Sites in Bursa, Turkey, Archives of Environmental Contamination and Toxicology, 78, 646–657. doi.org/10.1007/s00244- 020-00722-1
  • 27. Sharma, B.M., Melymuk, L., Bharat, G.K., Přibylová, P., Sáňka, O., Klánová, J. ve Nizzetto, L. (2018) Spatial gradients of polycyclic aromatic hydrocarbons (PAHs) in air, atmospheric deposition, and surface water of the Ganges River basin, Science of the Total Environment, 627, 1495–1504. doi.org/10.1016/j.scitotenv.2018.01.262
  • 28. Tasdemir, Y. ve Esen, F. (2007) Urban air PAHs: Concentrations, temporal changes and gas/particle partitioning at a traffic site in Turkey, Atmospheric Research, 84, 1–12. doi.org/10.1016/j.atmosres.2006.04.003
  • 29. Tobiszewski, M. ve Namieśnik, J. (2012) PAH diagnostic ratios for the identification of pollution emission sources, Environmental Pollution, 162, 110–119. doi.org/10.1016/j.envpol.2011.10.025
  • 30. Tsapakis, M. ve Stephanou, E.G. (2005) Polycyclic aromatic hydrocarbons in the atmosphere of the Eastern Mediterranean, Environmental Science & Technology, 39, 6584–6590. doi.org/10.1021/es050532l
  • 31. Vardar, N., Esen, F. ve Tasdemir, Y. (2008) Seasonal concentrations and partitioning of PAHs in a suburban site of Bursa, Turkey, Environmental Pollution, 155, 298–307. doi.org/10.1016/j.envpol.2007.11.026
  • 32. Wang, W., Simonich, S., Giri, B., Chang, Y., Zhang, Y., Jia, Y., Tao, S., Wang, R., Wang, B., Li, W., Cao, J. ve Lu, X. (2011) Atmospheric concentrations and air-soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing-Tianjin region, North China, Science of the Total Environment, 409, 2942–2950. doi.org/10.1016/j.scitotenv.2011.04.021
  • 33. Wu, Y., Salamova, A. ve Venier, M. (2021) Using diagnostic ratios to characterize sources of polycyclic aromatic hydrocarbons in the Great Lakes atmosphere, Science of the Total Environment, 761, 143240. doi.org/10.1016/j.scitotenv.2020.143240
  • 34. Yurdakul, S., Çelik, I., Çelen, M., Öztürk, F. ve Cetin, B. (2019) Levels, temporal/spatial variations and sources of PAHs and PCBs in soil of a highly industrialized area, Atmospheric Pollution Research, 10, 1227–1238. doi.org/10.1016/j.apr.2019.02.006
  • 35. Zhan, L., Huang, H., Zhao, S., Wang, Z., Zhang, G. ve Cheng, H. (2022) Comparison of atmospheric polycyclic aromatic hydrocarbons (PAHs) over six years at a CAWNET background site in central China: Changes of seasonal variations and potential sources, Chemosphere, 299, 134298. doi.org/10.1016/j.chemosphere.2022.134298
  • 36. Zhang, X.L., Tao, S., Liu, W.X., Yang, Y., Zuo, Q. ve Liu, S.Z. (2005) Source Diagnostics of Polycyclic Aromatic Hydrocarbons Based on Species Ratios: A Multimedia Approach, Environmental Science & Technology, 39, 9109–9114. doi.org/10.1021/es0513741
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

Yapısal Tasarım ve Sonlu Eleman Metodlarını Kullanarak Ticari Araçlardaki Termo-piston Destek Parçasının Optimum Tasarımı

Ulaş Aytaç KILIÇARPA, Betül Sultan YILDIZ, Ali Rıza YILDIZ

BETONARME KİRİŞLERİN DAVRANIŞINI ETKİLEYEN PARAMETRELERİN DENEYSEL İNCELENMESİ

Barış ESEN, Abdullah GÜNDOĞAY, Sıla YAMAN, Hamide TEKELİ KABAŞ, Fuat DEMİR

YER ALTI ARAÇ OTOPARKLARINDA JET FAN TİPİ VE FARKLI HAVA DEĞİŞİM SAYILARINA GÖRE YANGIN SENARYOSUNUN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ İLE İNCELENMESİ

Mustafa Sinan BAKIR, Kemal Furkan SÖKMEN

SÜPERKRİTİK VE KLASİK ORTAMDA POLİESTER BOYAMANIN YAŞAM DÖNGÜSÜ ANALİZİ İLE DEĞERLENDİRİLMESİ

Semiha EREN, Neslihan KARADAĞ, İdil YİĞİT, Hüseyin Aksel EREN

ÜRETİM SİSTEMLERİNDE DARBOĞAZ TESPİTİ: LİTERATÜR ARAŞTIRMASI

Nagihan AKKURT, Servet HASGÜL

Nanokompozitlerin Grafen ve Grafen Oksit ile Üretimi ve Karakterizasyonunun İncelenmesi

Nihayet KOÇYİGİT

Alüminyum Yüzey Plakası / Genişletilmiş Polipropilen Köpük Çekirdekli Sandviç Levhaların Çarpışma Enerjisi Sönümleme ve Mukavemet Özelliklerinin Deneysel Olarak İncelenmesi

İbrahim Kürşad TÜRKOĞLU

YÜZ GÖRÜNTÜLERİNE AYRIK KOSİNÜS DÖNÜŞÜMÜ UYGULANARAK GÖRÜNTÜ SINIFLANDIRMA SONUÇLARININ İYİLEŞTİRİLMESİ

Abdullah ŞENER, Burhan ERGEN

SÜRDÜRÜLEBİLİR ULAŞIM PLANLAMASI İÇİN ŞEHİR İÇİ OTOBÜS HATLARINDA SEFER ÇİZELGELEME OPTİMİZASYONU

Ulviye POLAT, Aysun SAĞBAŞ, Melike Selen DERMENCİ

MİLİMETRE DALGA BANDINDA İNVAZİF OLMAYAN BİR YÖNTEM İLE SIVILARDA GLİKOZ SEVİYESİNİN BELİRLENMESİ

Ömer Faruk GÖKTAŞ, İlyas ÇANKAYA, Esra ŞENGÜN ERMEYDAN