BİYOLOJİK OLARAK ARITILMIŞ TEKSTİL ENDÜSTRİSİ ATIKSULARININ LABORATUVAR ÖLÇEKLİ ÇAPRAZ AKIŞ SİSTEMİNDE TERS OZMOZ MEMBRANLARI KULLANILARAK GERİ KAZANIMI

Bu çalışmanın amacı; üç farklı ters ozmoz (TO) membranının gerçek tekstil endüstrisi atıksularının arıtımındaki performanslarının değerlendirilmesi ve kıyaslanmasıdır. Çalışmada tekstil endüstrisi atıksularını arıtan gerçek ölçekli atıksu arıtma tesisi çıkış suları kullanılmış olup, membran performansları kimyasal oksijen ihtiyacı (KOİ), renk, iletkenlik ve membran akısı açısından değerlendirilmiştir. Çalışmada 10 saatlik filtrasyon çalışmalarında çapraz akışlı filtrasyon düzeneği ile B400FR, B400HR ve BW30 membranları test edilmiştir. Aynı basınçta yapılan çalışmada, en yüksek permeabilite değerini (3,45±0,12 LMH/bar) ve en düşük akı kaybını (%69) B400HR membranı verirken, akıdaki en fazla azalma (%82) BW30 membranında gözlemlenmiştir. Kullanılan atıksu 4570±130 μS/cm iletkenlik, 188±2 Pt-Co renk ve 35±2 KOİ konsantrasyonlarına sahip olup, test edilen tüm membranlar için süzüntü KOİ değeri 10 mg/L'nin altına düşürülmüş olup, en iyi KOİ giderim performansını B400FR membranı göstermiştir. Ortalama iletkenlik giderimi ise tüm membranlar için %92 değerinin üzerinde olup, B400FR, B400HR ve BW30 için sırasıyla %96, 94 ve 92 değerlerindedir. Benzer şekilde tüm membranlar için renk giderimi %99’un üzerinde gerçekleşmiştir. Elde edilen sonuçlarla süzüntü suyunun aynı endüstride geri kullanımı mümkündür.

Recovery of Biologically Treated Textile Industry Wastewaters by Reverse Osmosis Membranes in the Lab-Scale Cross-Flow System

The aim of this study is the evaluation and comparison of the performance of three different reverse osmosis membranes on the treatment of real textile industry wastewater. The effluent of a real scale wastewater treatment plant which treats the textile industry wastewater, were used and the membrane performances were evaluated in terms of COD, color, conductivity removal and membrane flow rate. B400FR, B400HR and BW30 membranes were tested in a 10-hour filtration tests with a cross-flow filtration system. In the studies conducted at same pressure, the highest permeability value (3.45 ± 0.12 LMH/bar) and the lowest flux loss (69%) were found in the B400HR membrane while the highest decrease in flow was observed in the BW30 membrane (82%). The wastewater conductivity, color and COD concentrations were 4570±130 μS/cm; 188±2 Pt-Co and 35±2 mg/L, respectively and permeate COD values for all tested membranes were reduced below 10 mg/L and B400FR membrane was showed the best COD removal performance. The conductivity removal rates for B400FR, B400HR and BW30 membranes were 96, 94 and 92%, respectively and the average conductivity decrease for tested membranes were over 92%. Similarly, the color removal efficiency for all membranes was over 99%. According to these results, it is possible to reuse the filtrate of tested membranes in the same industry.

___

  • 1. Abid, M.F., Zablouk, M.A. ve Abid-Alameer, A.M. (2012) Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iranian J. Environ. Health Sci. Eng. 9, 17. doi:10.1186/1735-2746-9-17
  • 2. Akbari, A., Remigy, J.C. ve Aptel, P. (2002) Treatment of textile dye effluent using a polyamide-based nanofiltration membrane, Chem. Eng. Process. Process Intensif. 41, 601–609. doi:10.1016/S0255-2701(01)00181-7
  • 3. Aktaş, Ö., Sahinkaya, E., Yurtsever, A., Demir, S., Yüceyurt, M., Çakmak, A., Külekci, Ç., Tahmaz, Ş. ve Uludağ, M. (2017) Treatment of a chemical industry effluent by nanofiltration and reverse osmosis. Desalin. Water Treat. 75, 274–283. doi:10.5004/dwt.2017.20482
  • 4. Altinbas, U., Dökmeci, S. ve Baristiran, A. (1995) Treability study of wastewater from textile industry. Environ. Technol. 16, 389–394. doi: 10.1080/09593331608616280
  • 5. Amar, N. Ben, Kechaou, N. Palmeri, J., Deratani, A. ve Sghaier, A. (2009) Comparison of tertiary treatment by nanofiltration and reverse osmosis for water reuse in denim textile industry. J. Hazard. Mater. 170, 111–117. doi:10.1016/j.jhazmat.2009.04.130
  • 6. APHA (2005). Standard Methods for the Examination of Water and Wastewater. Washington DC, USA.
  • 7. Capar, G., Yilmaz, L. ve Yetis, U. (2006) Reclamation of acid dye bath wastewater : Effectof pH on nanofiltration performance. J. Memb. Sci. 281, 560–569. doi:10.1016/j.memsci.2006.04.025
  • 8. Chakraborty, S., De, S., Basu, J.K. ve DasGupta, S. (2005) Treatment of a textile effluent: Application of a combination method involving adsorption and nanofiltration. Desalination 174, 73–85. doi:10.1016/j.desal.2004.08.040
  • 9. Chen, G. (2004) Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38, 11–41. doi:10.1016/j.seppur.2003.10.006
  • 10. Guohua Chen, Xijun Chai, Po-Lock, Y. ve Yongli M. (1997) Treatment of textile desizing wastewater by pilot scale nanofiltration membrane separation. J. Memb. Sci. 127, 93–99. doi:10.1016/S0376-7388(96)00311-0
  • 11. Hildebrand, C., Kuglin, V.B. ve Branda, H.L. (2014) Insights into nanofiltration of textile wastewaters for water reuse, Clean Techn Environ policy 591–600. doi:10.1007/s10098-013-0665-8
  • 12. http://www.ab.ust.hk/hseo/sm06/ch19.htm, Erişim Tarihi: 27.04.2018 Konu: Chapter 19- Liquid Effluent
  • 13. Judd, S. ve Jefferson, B. (2003) Membranes for industrial wastewater recovery and re-use, Elsevier, Oxford, U.K. doi: 10.1016/B978-1-85617-389-6.X5000-0
  • 14. Kapdan, I.K. ve Kargi, F. (2002) Simultaneous biodegradation and adsorption of textile dyestuff in an activated sludge unit. Process Biochem. 37, 973–981. doi:10.1016/S0032-9592(01)00309-0
  • 15. Kurt, E., Koseoglu-imer, D.Y., Dizge, N., Chellam, S. ve Koyuncu, I. (2012) Pilot-scale evaluation of nanofiltration and reverse osmosis for process reuse of segregated textile dyewash wastewater. Desalination 302, 24–32. doi:10.1016/j.desal.2012.05.019
  • 16. Lanxess, (2012) Equipment Requirements and Procedure, Leverkusen.
  • 17. LANXESS Deutschland GmbH, (2014) Lewabrane RO membrane elements – premium products for many water treatment applications. Cologne.
  • 18. Lau, W.-J. ve Ismail, A.F. (2009) Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control — a review. Desalination. doi:10.1016/j.desal.2007.12.058
  • 19. Levenstein, R., Hasson, D. ve Semiat, R., (1996) Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes. J. Memb. Sci. 116, 77–92. doi:10.1016/0376-7388(96)00029-4
  • 20. Lin, S.H. ve Peng, C.F. (1994) Treatment of textile wastewater by electrochemical method. Water Res. 28, 277–282. doi:10.1016/0043-1354(94)90264-X
  • 21. Liu, M., Lü, Z., Chen, Z., Yu, S. ve Gao, C. (2011) Comparison of reverse osmosis and nanofiltration membranes in the treatment of biologically treated textile effluent for water reuse. Desalination 281, 372–378. doi:10.1016/j.desal.2011.08.023
  • 22. Mack, C., Burgess, J.E. ve Duncan, J.R. (2004) Membrane bioreactors for metal recovery from wastewater : A review, Water SA, 30, 521–532. doi: 10.4314/wsa.v30i4.5105
  • 23. Madaeni, S. ve Mansourpanah, Y. (2003) COD Removal from Concentrated Wastewater Using Membranes. Filtr. Sep. 40, 40–46. doi:10.1016/S0015-1882(03)00635-9
  • 24. Marrot, B. ve Roche, N. (2002) Wastewater treatment and reuse in textile industries, a review. Res. Adv. Water. Res 3, 41–53.
  • 25. Mulder, M. (2007) Basic Principles of Membrane Technology, Springer, India. doi: 10.1007/978-94-009-1766-8
  • 26. Pala, A. (2002) Color removal from cotton textile industry wastewater in an activated sludge system with various additives. Water Res. 36, 2920–2925. doi:10.1016/S0043-1354(01)00529-2
  • 27. Suksaroj, C., Héran, M., Allègre, C. ve Persin, F. (2005) Treatment of textile plant effluent by nanofiltration and/or reverse osmosis for water reuse. Desalination 178, 333–341. doi:10.1016/j.desal.2004.11.043
  • 28. The Dow Chemical Company, (2014) Cleaning Procedures for DOW FILMTEC FT30 Elements 1–7.
  • 29. Treffry-Goatley, K., Buckley, C.A. ve Groves, G.R., (1983) Reverse osmosis treatment and reuse of textile dyehouse effluents. Desalination 47, 313–320. doi:10.1016/0011-9164(83)87086-6
  • 30. Uzal, N., Yilmaz, L. ve Yetis, U. (2010) Nanofiltration and Reverse Osmosis for Reuse of Indigo Dye Rinsing Waters Nanofiltration and Reverse Osmosis for Reuse of Indigo. Sep. Sci. Technol. 45, 331–338. doi:10.1080/01496390903484818
  • 31. You, S.-J., Tseng, D.-H. ve Deng, J.-Y. (2008) Using combined membrane processes for textile dyeing wastewater reclamation, Desalination 234, 426–432. doi:10.1016/j.desal.2007.09.113
  • 32. Zahrim, A.Y., Tizaoui, C. ve Hilal, N. (2011) Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review. Desalination 266, 1–16. doi:10.1016/j.desal.2010.08.012
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR

Hasan Kemal SÜRMEN

Isı Transferinde Bilgisayar Destekli Simülasyon ve Ölçüm BelirsizliğiMefhumlarınınKeşifTabanlı Örnek Vaka Aracılığı ile Öğretilmesi

Mehmet Ekrem ÇAKMAK, Çağkan TAYLAN

Doğal ve Sentetik Lif Esasli Kompakt İpliklerden Üretilen Gömleklik Kumaşların Bazı Mekanik ve Hava Geçirgenliği Özelliklerinin İncelenmesi

Gizem KARAKAN GÜNAYDIN, Erhan Kenan ÇEVEN

SOĞUK DÖVME KALIPLARINDA ÖMÜR ARTIŞI ELDE ETMEK İÇİN BASKIN HASAR MEKANİZMASININ BELİRLENMESİ

M. Burak TOPARLI

YAPILARDA YAYGIN KULLANILAN ISI YALITIM MALZEMELERİNİN PERFORMANS ÖZELLİKLERİNİN DUVAR KESİTLERİ ÜZERİNDE DEĞERLENDİRİLMESİ

Nazife ÖZER, Seden ACUN ÖZGÜNLER

DYNAMIC SIMULATION OF A PV/WIND HYBRID POWER GENERATION SYSTEM: CASE STUDY OF BURSA PROVINCE

Ayşe Fidan ALTUN, Muhsin KILIÇ

SAMSUN İLİ ARAZİ KULLANIMI/ÖRTÜSÜNÜN MEKÂNSAL-ZAMANSAL DEĞİŞİMLERİNİN FRAKTAL ANALİZ KULLANILARAK BELİRLENMESİ

Derya ÖZTÜRK ENGİN, Uğur GÜNDÜZ

FARKLI GÜÇ AKTARMA SİSTEMLERİNE SAHİP HİDROJEN ENERJİLİ ELEKTRİKLİ ARAÇLARIN ENERJİ TÜKETİMİ VE GERİ KAZANIMLARININ KARŞILAŞTIRILMASI

Ahmet YILDIZ, Mert Ali ÖZEL, Osman KOPMAZ

GÜÇ TUTUŞUR POLİPROPİLEN POLİMERİ VE LİF UYGULAMALARINDA SON GELİŞMELER VE GELECEK BEKLENTİLERİ

Hüseyin AVCI, Mustafa Erdem ÜREYEN, Ali Murat KILIÇ, Adem Erdal SAĞLAM, Ali Demir YONGUÇ

Bir Fotovoltaik/Rüzgar Türbini Hibrit Güç Üretim Santralinin Dinamik Simulasyonu: Bursa İli Örneği

Muhsin KILIÇ, Ayşe Fidan ALTUN