ANALYSIS OF SURFACE PLASMON RESONANCE SENSING BASED ON PHASE-DETECTION IN THE INFRARED RANGE

Using phase detection in Surface Plasmon Resonance (SPR) sensing has potential improvements to the conventional intensity detection based SPR. Other than the phase detection and intensity detection based SPR in the visible range of the spectrum, employing SPR sensing principles in the infrared range by the use of silicon has also some promising advantages. Combining these two, in this paper, phase detection-based SPR sensing in the infrared range is studied using a mathematical model and numerical simulations. The results are compared with the results obtained by the simulations in the visible range. Performance improvements are noted by the use phase detection in the infrared range.

Faz Tespitine Dayalı Yüzey Plazmon Resonans Tabanlı Algılamanın Kızılötesi Bantta Analizi

Yüzey Plazmon Rezonansı (YPR) tabanlı algılamada geleneksel olarak kullanılan ışık şiddeti tespiti yerine faz tespitine dayanan bir yöntemin kullanılmasının önemli avantajları vardır. Bununla beraber ışık spektrumunun görünür aralığının yerine silikon kullanımıyla kızılötesi aralığında YPR tabanlı algılama yapılması da bazı umut verici avantajlara sahiptir. Bu çalışmada, faz algılamaya dayalı SPR algılamanın kızılötesi aralıkta ışık kullanımıyla birleştirilmesinin yaratacağı performans artışları matematiksel bir model ve sayısal benzetim yöntemleri kullanılarak incelenmiştir. Elde edilen sonuçlar, görünür banttaki benzetimlerden elde edilen sonuçlarla karşılaştırılmış ve kızılötesi bantta faz ölçümü tabanlı yaklaşımın daha yüksek performans verdiği gösterilmiştir.

___

J. W. Cleary, G. Medhi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 767306 (2010). doi: 10.1117/12.852576.

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W.R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B27, 730-734, (2010). doi: 10.1364/JOSAB.27.000730.

J. W. Cleary, G. Medhi, R. E. Peale, and W. R. Buchwald, “Long-wave infrared surface plasmon grating coupler,” Appl. Opt. 49, 3102-3110 (2010). doi: 10.1364/AO.49.003102.

H. N. Daghestani and B. W. Day, “Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors”, Sensors (Basel, Switzerland). 2010; 10(11):9630-9646. doi: 10.3390/s101109630.

E. Hecht, Optics, 2nd ed. Addison-Wesley, 1987.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3-15 (1999). doi: 10.1016/S0925-4005(98)00321-9.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528-539 (2003). doi. 10.1007/s00216-003-2101-0.

A. V. Kabashin, P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quan. Elec. 27, 653-654 (1997). doi: 10.1070/QE1997v027n07ABEH001013.

A. V. Kabashin, P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5-8 (1998). doi: 10.1016/S0030-4018(97)00726-8.

V. E. Kochergin, A. A. Beloglazov, M. V. Valeiko, P. I. Nikitin, “Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications,” Quan. Elec. 28, 444- 448 (1998). doi: 10.1070/QE1998v028n05ABEH001245.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. 23A, 2135-2136 (1968). doi: 10.1515/zna-1968-1247.

D. R. Lide eds. “Handbook of Chemistry and Pyhsics,” 72nd Ed., CRC Press, 1991-1992.

B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299-304 (1983). doi: 10.1016/0250-6874(83)85036-7.

V. Lirtsman, M. Golosovsky, and D. Davidov, “Infrared surface plasmon resonance technique for biological studies”, Journal of Applied Physics 103, 014702 (2008). doi: 10.1063/1.2828162.

H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications”, Sensors (Basel) 15, (10481–10510) 2015. doi: 10.3390/s150510481.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmons resonance,” Sens. Actuators 3, 79-88 (1982). doi: 10.1016/0250-6874(82)80008-5.

Optical Properties of Silicon, Virginia Semiconductor, Inc. www.virginiasemi.com.

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Properties and sensing characteristics of surface-plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20, 1644-1650 (2003). doi: 10.1364/JOSAA.20.001644.

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes,” Appl. Opt. 42, 6905-6909 (2003). doi: 10.1364/AO.42.006905.

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Near-infrared surface plasmon resonance sensing on a silicon platform,” Sens. Actuators B 97, 409-414 (2004). doi: 10.1016/j.snb.2003.09.023.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer- Verlag, Berlin, 1988).

B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14, 5641-5650 (2006). doi: 10.1364/OE.14.005641.

R. Soref, R. E. Peale and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507-6514 (2008). doi: 10.1364/OE.16.006507.

Y. Tang, X. Zeng, and J. Liang, “Surface Plasmon Resonance: An Introduction to a Surface Spectroscopy Technique”, Journal of chemical education. 2010; 87(7):742-746. doi: 10.1021/ed100186y.

M. M. B. Vidal, R. Lopez, S. Aleggret, J. AlonsoChamarro, I. Garces, J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455-459 (1993). doi: 10.1016/0925-4005(93)85287-K.

C. Wu and M. Pao, “Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection,” Opt. Express 12, 3509-3514 (2004). doi: 10.1364/OPEX.12.003509.

S. Y. Wu, H. P. Ho, W. C. Law, L. Chinlon, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the MachZehnder configuration,” Opt. Lett. 29, 2378-2380 (2004). doi: 10.1364/OL.29.002378.
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: 3
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

BAŞLICA BİYOİNFORMATİK ALGORİTMALARI İÇİN WEB ARA YÜZÜ VE YENİ OTOMAT TABANLI YAKLAŞIK DESEN EŞLEŞTİRME YAKLAŞIMI

Burak KOCA, Gıyasettin ÖZCAN

Hiperspektral Verilerin Sınıflandırmasında Derin Öğrenme ve Boyut İndirgeme Tekniklerinin Karşılaştırılması

Gizem ORTAÇ, Gıyasettin ÖZCAN

DEVELOPMENT OF A PHASE-OTDR INTERROGATOR BASED ON COHERENT DETECTION SCHEME

KIVILCIM YÜKSEL ALDOĞAN, Johan JASON, Marc WUILPART

GRAFİT VE BRONZ DOLGULU BİR PTFE KAYMALI YATAĞIN KURU SÜRTÜNME ÖZELLİKLERİNİN İNCELENMESİ

Gültekin KARADERE

DOĞAL YOL İLE HAVALANDIRILAN BİR SANAYİ KURULUŞUNDA ISIL KONFOR ĠNCELEMESĠ VE GĠYSĠ FAKTÖRÜ, METABOLĠK ORAN, ÇALIŞAN AĞIRLIĞININ KONFORA ETKİLERİNİN ARAŞTIRILMASI

Kemal Furkan SÖKMEN

INVESTIGATION OF THE EFFECT OF APPAREL FABRICS STRUCTURE ON AIR PERMEABILITY AND THERMAL COMFORT PROPERTIES

AYÇA GÜRARDA, Tuğba ZENGİN, Gökçe TOSUN

Bir X-ışını Salındırıcısının İşletime Hazır Hale Getirilmesi: Üretimin Ardından Tünele Kurulana Kadar İzlenen Prosedürler

Bora KETENOĞLU

GENİŞ BANT GERİLİM REFERANSI KULLANILARAK YAPIMI GERÇEKLEŞTİRİLEN YÜKSEK GERİLİM BÖLÜCÜSÜNÜN UZUN SÜRELİ KARARLILIĞI

Ahmet MEREV

ÇOK KATLI YAPILARDA ROBOTİK LAZER TARAYICI SİSTEMLERLE YAPISAL SAĞLIK TAKİBİ

MUAMMER ÖZBEK, YİĞİT DAĞHAN GÖKDEL

Başlıca Biyoinformatik Algoritmaları için Web Ara yüzü ve Yeni Otomat Tabanlı Yaklaşık Desen Eşleştirme Yaklaşımı

Gıyasettin ÖZCAN, Burak KOCA