ADSORPSİYON VE İYON DEĞİŞİMİ PROSESLERİYLE İÇME SULARINDAN DOĞAL ORGANİK MADDE GİDERİMİ

Organik maddelerin kompleks heterojen bir karışımı olan doğal organik madde (DOM), su kalitesi üzerinde neden olduğu olumsuz etkilerinin yanında klorla reaksiyonu sonucunda trihalometan (THM) ve haloasetik asit (HAA) gibi dezenfeksiyon yan ürünlerini (DYÜ) oluşturarak insanlar için önemli bir sağlık riski oluşturmaktadır.Bunun yanında DOM’un konsantrasyonu ve kompozisyondaki büyük değişkenlik, su arıtma tesislerinde DOM’un arıtımını zorlaştırmaktadır.Bu güne kadar içme sularından DOM giderimi için çeşitli arıtma metotları araştırılmıştır. Bu metotlar arasında adsorpsiyon, DOM giderimi için en çok çalışılan ve uygulanan proseslerden biridir.İyon değişimi de DOM giderimi için adsorpsiyona alternatif bir proses olarak ortaya çıkmıştır.Büyük bir kısmı negatif yüklü fraksiyonlardan oluşan DOM’lar, anyon değiştirici reçinelerle giderilebilir. Bu çalışmada, DOM’un içme sularından giderimi için kullanılan adsorpsiyon ve iyon değişimi proseslerinin performansıyla ilgili çeşitli araştırmacılar tarafından ortaya konan bilgiler derlenerek sunulmaktadır.Bu bağlamda DOM gideriminde kullanılan orijinal ve yüzeyleri farklı yöntemlerle modifiye edilmiş çeşitli adsorbentler incelenmiş, bu adsorbentlerin DOM giderme etkinlikleri ve bunu etkileyen faktörler irdelenmiştir.Çalışmada ayrıca iyon değiştirici reçinelerin kullanımı, reçine yapısının performans üzerindeki etkisi gibi konulara değinilmiş ve çözünmüş organik karbon (ÇOK) giderimi için özellikle tasarlanan manyetik iyon değiştirici (MIEX), akışkan yataklı iyon değiştirici (FIX) ve askıda iyon değiştirici (SIX) gibi farklı iyon değiştirme proseslerine yer verilmiştir.

Natural Organic Matter Removal From Drinking Water by Adsorption And Ion Exchange Process

As well as its negative effects on water quality, natural organic matter (NOM), a complex heterogeneous mixture of organic substances, poses a significant health risk fo humans by creating disinfection by-products such as trihalomethane (THM) and haloacetic acid (HAA) as a result of its reaction with chlorine. Furthermore, the large variation in NOM concentration and composition make it difficult to treat the NOM in water treatment plants. Various treatment method for NOM removal from drinking water have been investigated so far. Among these methods, adsorption is one of the most studied and applied processes for NOM removal. Ion exchange has also emerged as an alternativeprocess to adsorption for NOM removal. NOMs most of which are negatively charged fractions can be removed with anion exchange resins. In this study, the suggested information by various researchers about the performance of adsorption and ion exchange processes used for NOM removal from drinking water was complied and presented. In this context, the used diverse adsorbents in NOM removal, which are original and the surfaces of which were modified with different methods, were examined and NOM removal efficiencies of these adsorbents and the factors affecting their removal were discussed. In addition, the use of ion exchange resins and the effect of the resin structure on performance were discussed in the study. Different ion exchange processes, such as magnetic ion exchanger (MIEX), fluidized bed ion exchanger (FIX) and suspended ion exchanger (SIX®), which are specifically designed for there moval of dissolved organic carbon (DOC), were mentioned, as well.

___

  • Allpike, B. P., Heitz, A., Joll, C. A., Kagi, R.I., Abbt-Braun G., Frimmel F. H., Brinkmann, T., Her, N., Amy, G.(2005) Size exclusion chromatography to characterize doc removal in drinking water treatment. Environmental Science& Technology, 39(7), 2334–42. doi: 10.1021/es0496468
  • Ateş, N., İncetan, F. B. (2013) Competition Impact of Sulfate on NOMRemoval by Anion Exchange Resins in High-Sulfate and Low-SUVA Waters. Industrial&Engineering Chemistry Research, 52, 14261-14269. doi: 10.1021/ie401814v
  • Babi, K. G., Koumenides, K. M., Nikolaou, A. D., Makri, C. A., Tzoumerkas, F. K., Lekkas, T. D.(2007) Pilot study of the removal of THMs, HAAs and DOC from drinking water by GAC adsorption, Desalination 210, 215–224. doi: 10.1016/j.desal.2006.05.046
  • Bazri, M.M., Barbeau, B., Mohseni, M.(2016a) Evaluation of weak and strong basic anion exchange resins for NOM removal. J. Environ. Eng. 142, 4016044. doi: 10.1061/(ASCE)EE.1943-7870.0001111
  • Bazri, M.M., Martijn, B., Kroesbergen, J., Mohseni, M.(2016b) Impact of anionic ion exchange resins on NOM fractions: effect on N-DBPs and C-DBPs precursors, Chemosphere, 144, 1988-1995. doi: 10.1016/j.chemosphere.2015.10.086
  • Beita-Sandi, W., Karanfil, T.(2017) Removal of both N-nitrosodimethylamine and trihalomethanes precursors in a single treatment using ion exchange resins, Water Research 124, 20-28. doi: 10.1016/j.watres.2017.07.028
  • Bhatnagar, A., Sillanpaa, M.(2017) Removal of natural organic matter (NOM) and its constituents from water by adsorption ─ A review, Chemosphere, 166, 497-510. doi: 10.1016/j.chemosphere.2016.09.098
  • Boere, J. A. (1992) Combined use of ozone and granular activated carbon (GAC) in potable water treatment: effects on GAC quality after reactivation. Ozone: Science Engineering, 14:123–37. doi: 10.1080/01919519208552294
  • Bogosh, M., Galjaard, G., Kamp, P., Koreman, E., Malley, J., & Martijn, B. (2010)SIX® CERAMAC New Pre-Treatment Techniques for Surface Water Treatment. Internal Report, PWN Technologies, Andijk.
  • Bolto, B., Dixon, D., Eldridge, R.(2004) Ion exchange for the removal of natural organic matter. Reactive and Functional Polymer, 60, 171-182. doi: 10.1016/j.reactfunctpolym.2004.02.021
  • Bolto, B., Dixon, D., Eldridge, R., King, S., Linge, K.(2002) Removal of natural organic matter by ion exchange. Water Research, 36 (20), 5057–5065. doi: 10.1016/S0043-1354(02)00231-2
  • Bond, T., Goslan, E. H., Parsons, S.A., Jefferson, B.(2011) Treatment of disinfection byproduct precursors. Environmental Technology. 32, 1-25. doi: 10.1080/09593330.2010.495138
  • Boyer T. H., Singer P. C.(2005) Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors. Water Research;39(7):1265–76. doi: 10.1016/j.watres.2005.01.002
  • Boyer T. H., Singer, P. C.(2006) A pilot-scale evaluation of magnetic ion exchange treatment for removal of natural organic material and inorganic anions. Water Research, 06;40(15):2865–76. doi: 10.1016/j.watres.2006.05.022
  • Boyer, T. H. (2008) Removal of Natural Organic Matter by Anion Exchange: Multiscale Experimentation and Mathematical Modeling, PhD Thesis, The University of North Carolina, Chapel Hill.
  • Boyer, T. H.(2015)Removal of Dissolved Organic Matter by Magnetic Ion Exchange Resin, Current Pollution Reports, 1:142–154. doi: 10.1007/s40726-015-0012-2
  • Cheng, W., Dastgheib, S.A., Karanfil, T.(2005) Adsorption of dissolved natural organic matter by modified activated carbons. Water Reserach, 39, 2281-2290. doi: 10.1016/j.watres.2005.01.031
  • Cornelissen, E.R., Beerendonk, E.F., Nederlof, M.N., van der Hoek, J.P., Wessels, L.P.(2009) Fluidized ion exchange (FIX) to control NOM fouling in ultrafiltration. Desalination, 236, 334-341. doi: 10.1016/j.desal.2007.10.084
  • Cornelissen, E.R., Chasseriaud, D., Siegers, W.G., Beerendonk, E.F., van der Kooij, D. (2010) Effect of anionic fluidized ion exchange (FIX) pre-treatment on nanofiltration (NF) membrane fouling, Water Research, 44, 3283-3293. doi: 10.1016/j.watres.2010.03.007
  • Cornelissen, E.R., Moreau, N., Siegers, W.G., Abrahamse, A.J., Rietveld, L.C., Grefte, A., Dignum, M., Amy, G., Wessels, L.P.(2008) Selection of anionic exchange resins for removal of natural organic matter (NOM) fractions. Water Research 42 (1–2), 413-423. doi: 10.1016/j.watres.2007.07.033
  • Croue´, J.P., Violleau, D., Bodaire, C., Legube, B.(1999) Removal of hydrophobic and hydrophilic constituents by anion exchange resin. Water Science and Technology, 40 (9),207–214. doi: 10.1016/S0273-1223(99)00658-7
  • Cui, X., Choo, K-H.(2014)Natural Organic Matter Removal and Fouling Control in LowPressure Membrane Filtration for Water Treatment, Environmental Engineering Research, March,19(1) : 1-8. doi: 10.4491/eer.2014.19.1.001
  • Çapar, G., Yetiş, Ü. (2001) Ankara İçme Suyunda Aktif Karbon ile Doğal Organik Madde ve Trihalometan Giderimi, Turkish Journal of Engineering and Environmental Sciences, 25, 527-535.
  • Dabrowski, A. (2001) Adsorption from theory to practice. Advancesin Colloid Interface Science, 93, 135-224. doi:10.1016/S0001-8686(00)00082-8
  • Dastgheib, S.A., Karanfil, T., Cheng, W.(2004) Tailoring activated carbons for enhanced removal of natural organic matter from natural waters. Carbon 42, 547-557. doi: 10.1016/j.carbon.2003.12.062
  • Deng, S. (2006) Sorbent technology. In: Encyclopedia of Chemical Processing. Taylor&Francis, Newyork.
  • Ding, C., Shang, C.(2010). Mechanisms controlling adsorption of natural organic matter on surfactant-modified iron oxide-coated sand. Water Research, 44, 3651-3658. doi: 10.1016/j.watres.2010.04.014
  • Ding, C., Yang, X., Liu, W., Chang, Y., Shang, C.(2010) Removal of natural organic matter using surfactant-modified iron oxide-coated sand. Journal of Hazardous Materials, 174, 567-572. doi: 10.1016/j.jhazmat.2009.09.089
  • Dixit, F., Barbeau, B., Mohseni, M.(2018) Simultaneous uptake of NOM and MicrocystinLR by anion exchange resins: Effect of inorganic ions and resin regeneration, Chemosphere 192 (2018) 113-121. doi: 10.1016/j.chemosphere.2017.10.135.
  • Dixon, M.B., Morran, J.Y., Drikas, M.(2010)Extending membrane longevity by using MIEX® as a pre-treatment. Journal of Water Supply: Research and Technology, 59 (2), 92- 99. doi: 10.2166/aqua.2010.093
  • Dorfner, K.(1972) Ion exchangers; properties and applications 3rd Edition., Ann Arbor Science Publishers.
  • Drikas, M., Dixon, M., Morran, J.(2011) Long term case study of MIEX® pre-treatment in drinking water; understanding NOM removal. Water Research, 45, 1539-1548. doi: 10.1016/j.watres.2010.11.024
  • Drikas, M., Morran, J.Y., Pelekani, C., Hepplewhite, C., Bursill, D.B. (2002) Removal of natural organic matter - a fresh approach. Water Supply 2, 71-79. doi: 10.2166/ws.2002.0009
  • Eustáquio, H. M.B., Lopes, C. W., da Rocha, R. S., Cardoso, B. D., Pergher, S. B. C. (2015) Modification of Activated Carbon for the Adsorption of Humic Acid Adsorption Science & Technology Vol. 33 No. 2. doi: 10.1260/0263-6174.33.2.117
  • Erik Koreman, G.G. (2016) NOM-removal at SWTP Andijk (Netherlands) with a New Anion Exchange Process, Called SIX®, pp. 50.1-50.13.
  • Fabris, R., Chow, C.W.K., Drikas, M. (2004) Practical application of a combined treatment process for removal of recalcitrant NOM - alum and PAC. Water Science Technology. Water Supply 4, 89-94. doi: 10.2166/ws.2004.0065
  • Fabris, R., Lee, E.K., Chow, C.W.K., Chen, V., Drikas, M.(2007) Pre-treatments to reduce fouling of low pressure micro-filtration (MF) membranes. Journal of Membrane Science, 289, 231-240. doi: 10.1016/j.memsci.2006.12.003
  • Fearing, D.A., Banks, J., Guyetand, S., Monfort Eroles, C., Jefferson, B., Wilson, D., Hillis, P., Campbell, A.T., Parsons, S.A.(2004) Combination of ferric and MIEX® for the treatment of a humic rich water. Water Research, 38, 2551-2558. doi: 10.1016/j.watres.2004.02.020
  • Finkbeiner, P., Redman, J., Patriarca, V., Moore, G., Jefferson, B., Jarvis, P.(2018) Understanding the potential for selective natural organic matter removal by ion exchange, Water Research 146, 256-263. doi: 10.1016/j.watres.2018.09.042
  • Fu, P.L.K., Symons, J.M.(1990) Removing aquatic organic substances by anion exchange resins. Journal American Water Works Association 82 (10), 70–77. doi: 10.1002/j.1551-8833.1990.tb07039.x
  • Galjaard, G., Koreman, E., Metcalfe, D., Moore, G., Ericsson, P.(2018) NOM-removal by the SIX®-process, Water Practice and Technology (2018) 13 (3): 524-541. doi: 10.2166/wpt.2018.072
  • Gan, X. J., Karanfil, T., Kaplan Bekaroğlu, Ş.Ş., Shan, J. H. (2013) The control of NDBP and C-DBP precursors with MIEX®, Water Research, 47(3), 1344-1352. doi: 10.1016/j.watres.2012.11.049
  • Genz, A., Baumgarten, B., Goernitz, M., Jekel, M.(2008) NOM removal by adsorption onto granular ferric hydroxide: Equilibrium, kinetics, filter and regeneration studies, Water Research, 42 (2008) 238–248. doi: 10.1016/j.watres.2007.07.005
  • Grefte, A., Dignum, M., Cornelissen E. R., Rietveld L. C.(2013) Natural organic matter removal by ion exchange at different positions in the drinking water treatment lane, Drink. Water Engineering and Science, 6, 1–10. doi: 10.5194/dwes-6-1-2013
  • Gu, B., Schmitt, J., Chen, Z., Liang, L., McCarthy, J. F., (1995) Adsorption and desorption of different organic matter fractions on iron oxide, Geochimica et Cosmochimica Acta, 59 (2), 219-229. doi:10.1016/0016-7037(94)00282-Q
  • Gündağ, Ö. (2017) İçme Sularında Hümik Asit Giderim Verimlerinin İncelenmesi, Namık Kemal Üniversitesi, Yüksek Lisans Tezi.
  • Gümüş, D. (2013) İçme Sularından Doğal Organik Madde Gideriminde Alternatif Yöntemlerin Karşılaştırılması, Ondokuz Mayıs Üniversitesi, Doktora Tezi.
  • Gümüş, D., Akbal, F. (2013) İçme Sularında Doğal Organik Madde Giderimi ve Trihalometan Oluşumunun Önlenmesi, Mühendislik ve Fen Bilimleri Dergisi, 31, 529-553.
  • Godini, H.,Khorramabady, G. S., Mirhosseini, S. H. (2011) The Application of Iron-Coated Activated Carbon in Humic Acid Removal From Water, 2nd International Conference on Environmental Science and Technology IACSIT Press, Singapore.
  • Hanigan D, Inniss E, Clevenger TE.(2013) MIEX® and PAC for removal of hydrophilic DBP precursors. Journal American Water Works Association, 105(3):41–2. doi: 10.5942/jawwa.2013.105.0019
  • He. X., Elkouz, M., Inyang, M., Dickenson, E., Wert, E. C.(2017) Ozone regeneration of granular activated carbon for trihalomethane control, Journal of Hazardous Materials 326 (2017) 101–109. doi: 10.1016/j.jhazmat.2016.12.016
  • Helfferich, F. (1995) Ion Exchange. Dover Publications, Inc., USA.
  • Ho L, Hainthaler M, Newcombe G. (2013) Using UV spectroscopy and molecular weight determinations to investigate the effect of various water treatment processes on NOM removal: Australian case study. Journal of Environmental Engineering, 139(1):117–26. doi: 10.1061/(ASCE)EE.1943-7870.0000596
  • Hsu, S., Singer, P.C.(2010) Removal of bromide and natural organic matter by anion exchange. Water Research, 44, 2133-2140. doi: 10.1016/j.watres.2009.12.027
  • Huang, H., Cho, H.-H., Schwab, K.J., Jacangelo, J.G.(2012) Effects of magnetic ion exchange pretreatment on low pressure membrane filtration of natural surface water. Water Research, 46 (17), 5483-5490. doi: 10.1016/j.watres.2012.07.003
  • Huang, W., He, H., Dong, B., Chu, H., Xu, G., Yan, Z.(2015) Effects of macro-porous anion exchange and coagulation treatment on organic removal and membrane fouling reduction in water treatment. Desalination 355, 204-216. doi: 10.1016/j.desal.2014.10.045
  • Humbert, H., Gallard, H., Jacquemet, V., Croue´, J.(2007) Combination of coagulation and ion exchange for the reduction of UF fouling properties of a high DOC content surface water. Water Research, 41, 3803-3811. doi: 10.1016/j.watres.2007.06.009
  • Humbert, H., Gallard, H., Suty, H., Croue´ , J.(2005) Performance of selected anion exchange resins for the treatment of a high DOC content surface water. Water Research, 39, 1699–1708. doi: 10.1016/j.watres.2005.02.008
  • Humbert, H.,Gallard, H., Suty, H., Croue´, J.(2008) Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC), Water Research, 42 (2008) 1635 – 1643. doi: 10.1016/j.watres.2007.10.012
  • Iriarte-Velasco, U., Alvarez-Uriarte, J.I., Chimeno-Alanis, N., González-Velasco, J.R. (2008) Natural organic matter adsorption onto granular activated carbons: implications in the molecular weight and disinfection byproducts formation. Ind. Eng. Chem. Res. 47, 7868-7876. doi: 10.1021/ie800912y
  • İTASHY (İnsani Tüketim Amaçlı Sular Hakkında Yönetmelik), (2013) Resmi Gazete. http://www.resmigazete.gov.tr/eskiler/2013/03/20130307-7.htm.
  • Jacangelo, J.G., Demarco, J., Owen, D.M., Randtke, S.J.(1995) Selected processes for removing NOM – an overview, Journal American Water Works Association, 87, 64–77. doi: 10.1002/j.1551-8833.1995.tb06302.x
  • Jarvis P, Mergen M, Banks J, Mcintosh B, Parsons SA, Jefferson B. (2008) Pilot scale comparison of enhanced coagulation with magnetic resin plus coagulation systems. Environmental Science&Technology, 42(4): 1276–82. doi: 10.1021/es071566r
  • Joseph, L., Flora, J.R.V., Park, Y.-G., Badawy, M., Saleh, H., Yoon, Y.(2012) Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Separation and Purification Technology, 95, 64-72. doi: 10.1016/j.seppur.2012.04.033
  • Jutaporn, P., Singer, P. C., Cory, R. M., Coronell, O.(2016) Minimization of short-term low-pressure membrane fouling using a magnetic ion exchange (MIEX®) resin, Water Research 98 (2016) 225-234. doi: 10.1016/j.watres.2016.04.007
  • Kabsch-Korbutowicz, M., Majewska-Nowak, K., Winnicki, T.(2008)Water treatment using MIEX® DOC/ultrafiltration process. Desalination 221, 338-344. doi: 10.1016/j.desal.2007.01.092
  • Kaewsuk, J., Seo, G.T.(2011) Verification of NOM removal in MIEX®-NF system for advanced water treatment. Separation and Purification Technology. 80, 11-19. doi: 10.1016/j.seppur.2011.04.001
  • Kaneco, S., Itoh, K., Katsumata, H., Suzuki, T., Masuyama, K., Funasaka, K., Hatano, K., Ohta, K.(2003) Removal of natural organic polyelectrolytes by adsorption onto tobermorite. Environmental Science & Technology. 37, 1448-1451. doi: 10.1021/es020816v
  • Karanfil, T., Kitis, M., Kilduff, J.E., Wigton, A.(1999) Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 2. Natural organic matter. Environmental Science&Technology, 33, 3225-3233. doi: 10.1021/es981016g
  • Karpinska A, Boaventura RR, Vilar VP, Bilyk A, Molczan M. (2013) Applicability of MIEX®doc process for organics removal from NOM laden water. Environmental Science and Pollution Research,20(6):3890–9. doi: 10.1007/s11356-012-1334-x
  • Kim, K., Jang, A.(2017) Evaluation of natural organic matter adsorption on Fe-Al binary oxide: Comparison with single metal oxides, Chemosphere 185 (2017) 247-257. doi: 10.1016/j.chemosphere.2017.07.007
  • Kingsbury, R. S., Singer, P. C.(2013) Effect of magnetic ion exchange and ozonation on disinfection by-product formation, Water Research, 47, 1060-1072. doi: 10.1016/j.watres.2012.11.015
  • Kitis, M., Ilker Harman, B., Yigit, N.O., Beyhan, M., Nguyen, H., Adams, B. (2007b) The removal of natural organic matter from selected Turkish source waters using magnetic ion exchange resin (MIEX®). Reactive and Functional Polymers, 67, 1495-1504. doi: 10.1016/j.reactfunctpolym.2007.07.037
  • Kitis, M., Kaplan, S.S., Karakaya, E., Yigit, N.O., Civelekoglu, G., (2007a) Adsorption of natural organic matter from waters by iron coated pumice. Chemosphere, 66, 130-138. doi: 10.1016/j.chemosphere.2006.05.002
  • Korotta-Gamage, S. M., Sathasivan, A.(2017) A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process, Chemosphere 167, 120-138. doi: 10.1016/j.chemosphere.2016.09.097
  • Lai, C.H., Chen, C.Y.(2001)Removal of metal ions and humic acid from water by ironcoated filter media. Chemosphere, 44, 1177-1184. doi: 10.1016/S0045-6535(00)00307-6
  • Leenheer, J.A., Croue, J.P.(2003) Characterizing aquatic dissolved organic matter, Environmental Science Technology, 37, 18A–26A. doi: 10.1021/es0264089
  • Levchuk, I., Márquez, J. J. R., Sillanpää, M.(2018) Removal of natural organic matter (NOM) from water by ion exchange - A review, Chemosphere 192, 90-104. doi: 10.1016/j.chemosphere.2017.10.101
  • Li, P., SenGupta, A.K.(2000) Intraparticle diffusion during selective sorption of trace contaminants: The effect of gel versus macroporous morphology. Environmental Science &Technology 34 (24), 5193–5200. doi: 10.1021/es001299o
  • Lin, H. C., Wang, G. S.(2011) Effects of UV/H2O2 on NOM fractionation and corresponding DBPs formation, Desalination, 270, 221–226. doi: 10.1016/j.desal.2010.11.049
  • Lin, J., Zhan, Y.(2012) Adsorption of humic acid from aqueous solution onto unmodified and surfactant-modified chitosan/zeolite composites. Chemical Engineering Journal, 200- 202, (2012) 202-213. doi: 10.1016/j.cej.2012.06.039
  • López-Ortiz, C. M., Sentana-Gadea, I., Varó-Galvaň, P. J., Maestre-Pérez, S. E., PratsRico, D.(2018) Effect of magnetic ion exchange (MIEX®) on removal of emerging organic contaminants, Chemosphere 208, 433-440. doi: 10.1016/j.chemosphere.2018.05.1
  • Marais, S. S., Ncube, E. J., Msagati, T. A. M., Mamba, B. B., Nkambule, T. I.(2018) Comparison of natural organic matter removal by ultrafiltration, granular activated carbon filtration and full scale conventional water treatment, Journal of Environmental Chemical Engineering 6, 6282–6289. doi: 10.1016/j.jece.2018.10.002
  • Matilainen, A. (2007) Removal of the Natural Organic Matter in the Different Stages of the Drinking Water Treatment Process. Tampere University of Technology, Phd Thesis.
  • Matilainen, A., Gjessing, E., Lahtinen, T., Hed, L., Bhatnagar, A. and Sillanpää, M. (2011) An overview of the methods used in the characterization of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere, 83: 1431–1442. doi: 10.1016/j.chemosphere.2011.01.018
  • Matilainen, A., Sillanpää, M.(2010) Removal of natural organic matter from drinking water by advanced oxidation processes, Chemosphere, 80, 351–365. doi: 10.1016/j.chemosphere.2010.04.067
  • Matilainen, A., Vepsäläinen, M., Sillanpää, M.(2010) Natural organic matter removal by coagulation during drinking water treatment: a review. Advances in Colloid Interface Science, 159 (2),189–197. doi: 10.1016/j.cis.2010.06.007
  • Matilainen, A., Vieno, N., Tuhkanen, T.(2006)Efficiency of the activated carbon filtration in the natural organic matter removal, Environment International 32, 324 – 331. doi: 10.1016/j.envint.2005.06.003
  • Menya, E., Olupot, P.W., Storz, H., Lubwama, M., Kiros, Y.(2018)Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review, Chemical Engineering Research and Design, 129, 271–296. doi: 10.1016/j.cherd.2017.11.008
  • Mergen, M.R.D., Jefferson, B., Parsons, S.A., Jarvis, P.(2008)Magnetic ion-exchange resin treatment: impact of water type and resin use. Water Research. 42, 1977-1988. doi: doi.org/10.1016/j.watres.2007.11.032
  • Metcalfe, D., Rockey, C., Jefferson, B., Judd, S., Jarvis, P.(2015) Removal of disinfection by-product precursors by coagulation and an innovative suspended ion exchange process, Water Research 87, 20-28. doi: 10.1016/j.watres.2015.09.003
  • Metcalfe, D. (2016) Application of Suspended Ion Exchange, In-line Coagulation and Ceramic Membranes for Surface Water Treatment, Master Thesis, Cranfield University, 109 pp.
  • Moussavi, G., Talebi, S., Farrokhi, M.,Sabouti, R. M. (2011) The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite,Chemical Engineering Journal 171, 1159–1169. doi: 10.1016/j.cej.2011.05.016
  • Nagpal, N., Kakkar, R.(2019) Use of metal oxides for the adsorptive removal of toxic organic pollutants. Separation and Purification Technology, 211, 522–539. doi: 10.1016/j.seppur.2018.10.016
  • Nkambule, T.I., Krause, R.W., Mamba, B.B., Haarhoff, J.(2009) Removal of natural organic matter from water using ion-exchange resins and cyclodextrin polyurethanes. Physics and Chemistry Earth, Parts A/B/C 34, 812-818. doi: 10.1016/j.pce.2009.07.013
  • Pagano, T., Bida ., M., Kenny, J. E.(2014) Trends in Levels of Allochthonous Dissolved Organic Carbon in Natural Water: A Review of Potential Mechanisms under a Changing Climate, Water, 6,2862-2897. doi: 10.3390/w6102862
  • Peng, X., Luan, Z., Chen, F., Tian, B., Jia, Z.(2005) Adsorption of humic acid onto pillared bentonite, Desalination, 174, 135-143. doi: 10.1016/j.desal.2004.09.007
  • Peng, X., Luan, Z., Zhang, H.(2006) Montmorillonite–Cu(II)/Fe(III) oxides magnetic material as adsorbent for removal of humic acid and its thermal regeneration, Chemosphere 63, 300–306. doi: 10.1016/j.chemosphere.2005.07.019
  • Rahman, M. S., Whalen, M., Gagnon, G. A.(2013) Adsorption of dissolved organic matter (DOM) onto the synthetic iron pipe corrosion scales (goethite and magnetite): Effect of pH, Chemical Engineering Journal, 234, 149–157. doi: 10.1016/j.cej.2013.08.077
  • Rahmani, S. (2017)The Removal Mechanism of Natural Organic Matter by Ion Exchange Resins From Thermodynamic Perspectives, The University of British Columbia, PhD Thesis.
  • Roakes, H. (2014) Investigation of Anion and Cation Exchange Resins for Use in the Suspended İon Exchange® (SIX®) System, Master Thesis, The University Of New Hampshire New Hampshire University, 208 pp.
  • Sillanpää, M. (2014) Natural Organic Matter in Water: Characterization and Treatment Methods, Butterworth-Heinemann, IWA Publishing, 364pp.
  • Smith, P., O’Leary, B., Tattersall, J., Allpike, B. (2003) The MIEX®Process - A Year of Operation. Proceedings Ozwater Convention Perth April on CD.
  • Singer, P.C., Bilyk, K.(2002) Enhanced coagulation using a magnetic ion exchange resin. Water Research, 36, 4009-4022. doi: 10.1016/S0043-1354(02)00115-X
  • Szymczycha, B., Winogradow, A., Kuli, K., Koziorowska, K.,Pempkowiak, J.(2017) Diurnal and seasonal DOC and POCvariability in the land-locked sea. Oceanologia 59 (3), 379–388. doi: 10.1016/j.oceano.2017.03.008
  • Tan, Y., Kilduff, E., Kitis, M., Karanfil, T.(2005) Dissolved organic matter removal and disinfection byproduct formation control using ion Exchange, Desalination, 176(1–3), pp.189–200. doi: 10.1016/j.desal.2004.10.019
  • Teksoy, A., Alkan, U., Başkaya, H. S. (2008) Influence of the treatment process combinations on the formation of THM species in water. Seperation and Purification Technology, 61(3), 447-454. https://doi.org/10.1016/j.seppur.2007.12.008.
  • Tözüm Akgül, S. (2015) Sulardan selenyum ve doğal organik maddenin çeşitli doğal ve endüstriyel atık malzemeler kullanılarak giderilmesi, Doktora Tezi, Süleyman Demirel Üniversitesi.
  • USEPA(2006) National primary drinking water regulations: stage 2 disinfection and disinfection byproducts rule, EPA, 2006.
  • USEPA(2012) EPA Drinking Water Guidance on DisinfectionBy-Products Advice Note No. 4. Version 2. Disinfection By-Products in Drinking Water (978-1-84095-444-9). United States Environmental Protection Agency (USEPA), United States of America.
  • Uyak, V., Yavuz, S., Toroz, İ., Özaydın, Ş., Ateş Gençeli, E. (2007) Disinfection byproducts precursors removal by enhanced coagulation and PAC adsorption, Desalination, 216, 334-344. https://doi.org/10.1016/j.desal.2006.11.026.
  • Wall, N.A., Choppin, G.R. (2003) Humic acids coagulation: influence of divalent cations. Applied Geochemistry 18, 1573–1582. doi: 10.1016/S0883-2927(03)00046-5
  • Walker, K. M, Boyer, T. H. (2011) Long-term performance of bicarbonate form anion exchange: removal of dissolved organic matter and bromide from the St. Johns River, FL, USA. Water Research,45(9):2875–86. doi: 10.1016/j.watres.2011.03.004
  • Wang, L., Han, C., Nadagouda, M. N., Dionysiou, D. D.(2016) An innovative zinc oxidecoated zeolite adsorbent for removal ofhumic acid, Journal of Hazardous Materials, 313, 283–290. doi: 10.1016/j.jhazmat.2016.03.070
  • Watson, K, Farré, MJ, Knight, N. (2015) Enhanced coagulation with powdered activated carbon or MIEX® secondary treatment: a comparison of disinfection by-product formation and precursor removal. Water Research.;68(0):454–66. doi: 10.1016/j.watres.2014.09.042
  • Watson, K., Farré, MJ, Knight, N.(2016)Comparing a silver-impregnated activated carbon with an unmodified activated carbon for disinfection by-product minimisation and precursor removal, Science of the Total Environment 542, 672–684. doi: 10.1016/j.scitotenv.2015.10.125
  • Winter, J., Wray, H. E., Schulz, M., Vortisch, R., Barbeau, B., Bérubé, P.R.(2018)The impact of loading approach and biological activity on NOM removal by ion exchange resins, Water Research, 134, 301-310. doi: 10.1016/j.watres.2018.01.052
  • Xie, J.,Wang, D., Van Leeuwen, J., Zhao, Y., Xing, L., Chow, CWK(2012) pH modeling for maximum dissolved organic matter removal by enhanced coagulation, Journal of Environmental Sciences, 24(2) 276–283. doi: 10.1016/S1001-0742(11)60717-1
  • Xu, J., Xu, W., Wang, D., Sang, G.,Yang, X.(2016) Evaluation of enhanced coagulation coupled with magnetic ion exchange (MIEX®) in natural organic matter and sulfamethoxazole removals: The role of Al-based coagulant characteristic, Separation and Purification Technology 167, 70–78. doi: 10.1016/j.seppur.2016.05.007
  • Zhan, Y., Lin, J., Qiu, Y., Gao, N., Zhu, Z.(2011) Adsorption of humic acid from aqueous solution on bilayer hexadecyltrimethyl ammonium bromide-modified zeolite. Frontiers of Environmental Science&Engineering, China 5, 65-75. doi: 10.1007/s11783-010-0277-z
  • Zhan,Y.H., Zhu, Z.L., Lin, J.W., Qiu, Y.L., Zhao, J.F.(2010) Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite, Journal of Environmental Science, 22, 1327–1334. doi: 10.1016/S1001-0742(09)60258-8
  • Zhou, Y., Zhang, Y., Li, P., Li, G., Jiang, T.(2014) Comparative study on the adsorption interactions of humic acid onto natural magnetite, hematite and quartz: Effect of initial HA concentration, Powder Technology 251, 1–8. doi: 10.1016/j.powtec.2013.10.011
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

Sinkrotron Işınımı: Depolama Halkasından Sert X-ışını Demet Hattına

Didem KETENOGLU

ÜÇ BOYUTLU DOKUMA KUMAŞ TAKVİYELİ SANDVİÇ KOMPOZİTLERDE YÜZEYLERDEKİ ELYAF KATMAN SAYISININ EĞİLME DAVRANIŞINA ETKİSİ

Rukiye ERTAN, Abdil KUŞ, İsmail DURGUN

BİLEK REHABİLİTASYONU İÇİN DÜŞÜK MALİYETLİ BİR TAŞINABİLİR ROBOTİK CİHAZIN GELİŞTİRMESİ VE KONTROLÜ

İbrahim KARABIYIK, Ergin KILIÇ, Atilla BAYRAM

ANAEROBİK ÇÜRÜTÜCÜ ATIKSULARININ MİKROALG REAKTÖRLERİNDE ARITILMASI

Ülker Diler KERİŞ ŞEN

KONVANSİYONEL RİNG VE YENİ BİR MODİFİYE RİNG İPLİK EĞİRME SİSTEMİ KULLANILARAK ÜRETİLEN İPLİK VE KUMAŞLARIN BAZI ÖZELLİKLERİNİN KARŞILAŞTIRILMASI

Gözde BUHARALI, Sunay ÖMEROĞLU

BAŞLANGIÇ EĞRİLİK KUSURLARININ MESNETLENME DURUMU VE MODÜL SAYISINA GÖRE DÜZLEMSEL ÇİFT TABAKALI UZAY KAFES SİSTEMLERİN DAVRANIŞINA ETKİSİ

Mojibullah NOORİ, Nurten TOPALOĞLU, Mustafa TEMŞİ, Hakan TÜRKER

ARAÇLARDA KULLANILAN EMNİYET KEMERLERİNİN KAZA ANINDA İNSAN SAĞLIĞINA OLAN OLUMSUZ ETKİLERİNİN AZALTILMASI İÇİN BİR SİSTEM GELİŞTİRİLMESİ

Reşat Oğuzhan SÜMER, Betül GÜLÇİMEN ÇAKAN, Mustafa Cemal ÇAKIR, Agah UĞUZ

Nano Boyutlu Vücut Merkezli Kablosuz Ağların Alveolar Alanları ve İnsan Dokuları için Numerik Analizi

Mustafa Alper AKKAŞ

Kendiliğinden Yerleşen Betonla Yapılan Kolon-Kiriş Birleşimlerinde Donatı Oranı Etkisinin Değerlendirilmesi

Hamid FARROKH GHATTE

YALIN VE LİFLİ POLİMER SARGILI BETONARME KİRİŞLERDE EĞİLME DAVRANIŞININ SONLU ELEMAN MODELLEMESİ

Kanat Burak BOZDOĞAN, Hasan Orhun KÖKSAL, Selen AKTAN