A COMPARATIVE STUDY FOR HYPERSPECTRAL DATA CLASSIFICATION WITH DEEP LEARNING AND DIMENSIONALITY REDUCTION TECHNIQUES

In recent years, hyperspectral imaging has been a popular subject in the remote sensing community by providing a rich amount of information for each pixel about fields. In general, dimensionality reduction techniques are utilized before classification in statistical pattern-classification to handle high-dimensional and highly correlated feature spaces. However, traditional classifiers and dimensionality reduction methods are difficult tasks in the spectral domain and cannot extract discriminative features. Recently, deep convolutional neural networks are proposed to classify hyperspectral images directly in the spectral domain. In this paper, we present comparative study among traditional data reduction techniques and convolutional neural network. The obtained results on hyperspectral image data sets show that our proposed CNN architecture improves the accuracy rates for classification performance, when compared to traditional methods by increasing the classification accuracy rate by 3% and 6%.

___

  • Arslan, O. ve Köse, R. (2006) Thermoeconomic optimization of insulation thickness considering condensed vapor in buildings”, Energy and Buildings, 38(12), 1400-1408. doi: 10.1016/j.enbuild.2006.02.012
  • Atmaca, Ş.U. ve Kargıcı, S. (2006) Konya’da kış aylarında yapı malzemelerinde oluşan buhar geçişinin örnekle incelenmesi, Mühendis ve Makine, 47, 55-62.
  • Bolattürk, A. (2008) Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey, Building and Environment, 43(6), 1055-1064. doi: 10.1016/j.buildenv.2007.02.014
  • Chang, S.J. ve Kim, S. (2015) Hygrothermal performance of exterior wall structures using a heat, air and moisture modeling, Energy Procedia, 78, 3434-3439. doi: 10.1016/j.egypro.2015.12.328
  • Çengel, Y. ve Ghajar, A. (2010) Heat and Mass Transfer: Fundamentals and Applications, McGraw Hill Inc., New York.
  • Dağsöz, A.K. (1995) Türkiye’de Derece-Gün Sayıları, Ulusal Enerji Tasarruf Politikası, Yapılarda Isı Yalıtımı, İzocam Yayınları, İstanbul.
  • Gürel, A.E. ve Cingiz, Z. (2011) Economical analysis of determination thermal insulation thickness for different external walls, Sakarya University Journal of Science, 15(1), 75-81.
  • Heperkan, A.H., Bircan, M.M. ve Sevindir, M.K. (2001) Yapı malzemelerinde buhar difüzyonu ve yoğuşma, V. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi, İzmir, 461-470.
  • Kaynaklı, Ö. (2008) A study on residential heating energy requirement and optimum insulation thickness, Renewable Energy, 33, 1164-1172. doi: 10.1016/j.renene.2007.07.001
  • Kaynaklı, Ö., Canbolat, A.S. ve Bademlioğlu, A.H. (2017) A study on the parameters affecting insulation thickness on external wall of buildings, International Journal of Mechanical and Production Engineering, 5(7): 81-84.
  • Kaynaklı, O., Bademlioğlu, A.H. ve Ufat, H.T. (2018) Determination of optimum insulation thickness for different insulation applications considering condensation, Tehnicki Vjesnik, 25(Supplement 1), 32-42. doi: 10.17559/TV-20160402130509
  • Kürekçi, N.A. (2016) Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers, Energy and Buildings, 118, 197-213. doi: 10.1016/j.enbuild.2016.03.004
  • Liu, X., Chen, Y., Ge, H., Fazio, P. ve Chen, G. (2015) Numerical investigation for thermal performance of exterior walls of residential buildings with moisture transfer in hot summer and cold winter zone of China, Energy and Buildings, 93, 259-268. doi: 10.1016/j.enbuild.2015.02.016
  • Meteoroloji Genel Müdürlüğü, İllerimize Ait Genel İstatistik Verileri. Erişim Adresi: https://mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=BITLIS (Erişim Tarihi:23.11.2018)
  • Moon, H.J., Ryu, S.H. ve Kim, J.T. (2014) The effect of moisture transportation on energy efficiency and IAQ in residential buildings, Energy and Buildings, 75, 439-446. doi: 10.1016/j.enbuild.2014.02.039
  • TUİK, Türkiye İstatistik Kurumu; 2018 (www.tuik.gov.tr)
  • You, S., Li, W., Ye, T., Hu, F. ve Zheng, W. (2017) Study on moisture condensation on the interior surface of buildings in high humidity climate, Building and Environment, 125, 39- 48. doi: 10.1016/j.buildenv.2017.08.041
  • Zhu, P., Huckemann, V. ve Fisch, M.N. (2011) The optimum thickness and energy saving potential of external wall insulation in different climate zones of China, Procedia Engineering, 21, 608-616. doi: 10.1016/j.proeng.2011.11.2056
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: 3
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ