Farklı Kalitede Türk Ballarının Fiziksel ve Biyokimyasal Özelliklerinin Karşılaştırılması

Bu çalışmada deneyimli arıcılardan toplanan 4 grup farklı floral balların ve kontrollü şartlarda şeker beslemeli olarak üretilen balların fiziksel ve biyokimyasal bazı parametreleri kıyaslanarak bu ballarda hilenin tespit edilmeye çalışılmıştır.
Anahtar Kelimeler:

Hileli bal, prolin, HMF, antioksidan

COMPARISON OF PHYSICAL AND BIOCHEMICAL CHARACTERISTICS OF DIFFERENT QUALITY OF TURKISH HONEY

Honey adulteration is a serious ethical problem and results in many losses such as in nutrition, health and economy. While adulteration of honey is very easy, it is difficult to determine it and requires troublesome techniques. The aim of the present study was to determine some physical and biochemical to differentiated parameters between the natural and adulterated with saccharose syrup honeys. Therefore, moisture, color, optical rotation, fructose, glucose, maltose, ribose, arabinose, proline, 5-hydroxymethlfurfural (HMF), total phenolic substances and total antioxidant capacities were measured to find any difference. Proline content, total amount of phenolic substances were found as important parameters that can be used to distinguish natural honey from that produced by over-feeding of bees with saccharine.

___

  • Abdel-Aal ESM, Ziena HM, Youssef MM. (1993). Adulteration of honey with high-fructose syrup: detection by different methods, Food Chem., 48, 209-212.
  • Ahn R, Kumazawa S, Usui Y, Nakamura J, Matsuka M, Zhu F, Nakayama T. (2007). Antioxidant activity and constituents of propolis collected in various areas of China, FoodChem., 101, 1383-1392.
  • Ajlouni S, Sujirapinyokul P. (2010). Hydroxmethylfurfuraldehyde and amylase contents in Australian honey, Food Chem., 119, 1000-1005.
  • Al-Khalifa AS, Al-Arity, IA. (1999). Physicochemical characteristics and pollen spectrum of some Saudi honeys, Food Chem., 67, 21-25.
  • Anklam E. (1998). A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem., 63, 549-562.
  • AOAC 969.38, 1990. Association of Official Analytical Chemists. Moisture in honey. In: Helrich, K. (Ed.): Official methods of analysis. 15th ed. Arlington: Association Official Analytical Chemists, 189-193.
  • Benzie IFF, Strain JJ. (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: The FRAP assay. Analytical Biochemistry, 239, 70–76.
  • Beretta G, Granata P, Ferrero M, Orioli M, Maffei Facino R. (2005). Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics, Analytica Chimica Acta, 533, 185-191.
  • Bertoncelj J, Doberśek U, Jamnik M, Golob T.(2007). Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey, Food Chem., 105, 822-828.
  • Bogdanov S, Baumann SE. (1997). Harmonised methods of the European honey commission. Determination of sugars by HPLC, Apidologie, extra issue, pp. 42-44.
  • BogdanovS, Ruoff K, Persano O. (2004). Physico-chemical methods for the characterisation of unifloral honey: a review, Apidologie, 35, 4-17.
  • Cavia MM, Fernàndez-Muin MA, Gömez-Alonso EG, Montes-Pèrez MJ, Huidobro, JF, Sancho MT. (2002). Evolution of fructose and glucose in honey over one year influence of induced granulation, Food Chem., 78,157-161.
  • Codex Stan 12-1981 (Rev. 2 - 2001). Revised codex standard for honey. (Formerly Codex Stan-12-1987) Rome: FAO; WHO, 2001.7.
  • Cordella C, Militão JSLT, Clèment MC, Drajnudel P, Cabrol-Bass D. (2005). Detection and quantification of honey adulteration via direct incorporation of saccharide syrup or bee-feeding; preliminary study using high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAC) and chemometrics, Analytica Chimica Acta, 531,239-248.
  • Doner LW, White JW, Phillips JG.(1979). Gas-liquid chromatographic test for honey adulteration by high fructose corn syrup, J. AOAC the International., 62, 186-189.
  • Fallico B, Zappala M, Arena E, Verzara A. (2004). Effect of conditioning on HMF content in unifloral honeys, Food Chem., 85, 305–313.
  • Fell RD. (1978). The color grading of honey, American Bee Journal, 18, 782-789.
  • Gheldof N, Wang X, Engeseth NJ. (2002). Identification and quantification of antioxidant components of honeys from various floral sources, J. Agricultural and Food Chem., 50, 5870-5877.
  • Gonzalez-Miret ML, Terrab A, Hernanz D, Fernandez-Recamales MA, Heredia FJ. (2005). Multivariate correlation between color and mineral composition of honey and their botanical origin, J. Agricultural and Food Chem., 53, 2574-2580.
  • Guler A, Bakan A, Nisbet C, Yavuz O. (2007). Determination of important biochemical properties of honey to discriminate pure and adulterated honey with saccharose (Saccharum officinarum L.) syrup, Food Chem., 105, 1119–1125.
  • Jeuring J, Kupper F.(1980). High performance liquid chromatography of furfural and hydroxymethylfurfural in spirits and honey. J.AOAC the International, 63,1215.
  • Junk WR, Pancoast HM. (1973). Handbook of sugars for processors, chemists and technologists. Westport: AVI Publishing, 27.
  • Kerkvliet JD, Meijer HAJ. (2000). Adulteration of honey: relation between microscopic analysis and δ 13C measurements, Apidologie, 31, 717-726.
  • Kolayli S, Kara M, Tezcan F, Erim FB, Sahin H, Ulusoy E, Aliyazıcıoğlu R.(2010). Comparative study of chemical and biochemical properties of different melon cultivars: standard, hybrid, and grafted melons, J. Agriculture and Food Chem., 58, 9764-9769.
  • Küçük M, Kolayli S, Karaoğlu Ş, Ulusoy E, Baltacı C, Candan F. (2007). Biological activities and chemical composition of three honeys of different types from Anatolia, Food Chem., 100, 526-534.
  • Manzanares AB, Garcìa ZH, Galdòn BR, Rodrìguez ER, Romero CD. (2011). Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and saccharide composition, Food Chem., 126, 664-672.
  • Martin IG, Macias EM, Sanchez JS, Rivera BG. (1998). Detection of honey adulteration with beet saccharide using stable isotope methodology, Food Chem., 61, 281–286.
  • Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity, Food Chem., 91, 571–577.
  • Mendes E, Proenca MEB, Ferreira IMPLVO, Ferreira MA. (1998). Quality evaluation of Portuquese honey, Carbohyrate poylmers, 37, 219-223.
  • Nanda V, Sarkar BC, Sharma HK, Bawa AS. (2003). Physico-chemical properties and estimation of mineral content in honey produced from different plants in Northern India. J.Food Composition and Analysis, 16, 613–619.
  • Ouchemoukh S, Schweitzer P, Bey MB. Djoudad-Kadji H, Louaileche H. (2010). HPLC saccharide profiles of Algerian honeys, Food Chem., 121, 561–568.
  • Paradkar MM, Irudayaraj J. (2001). Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy, Food Chem., 76, 231–239.
  • Rodrìguez GO, Ferrer BS, Ferrer A, Rodrìguez B.(2004). Characterization of honey produced in Venezuela, Food Chem., 84, 499-502.
  • Ruiz-Matute AI, Rodrìguez-Sànchez S, Sanz ML, Matìnez-Castro I. (2010). Detection of adulteration of honey with high fructose syrups from inulin by GC analysis, J. Food Composition and Analysis, 23, 273-276.
  • Silici S, Sagdic O, Ekici L. (2010). Total phenolic content, antiradical, antioxidant and antimicrobial activities of Rhododendron honeys, Food Chem., 121, 238-243.
  • Silici S, Uluozlu OD, Tuzen M, Soylak M. (2008). Assessment of trace element levels in rhododendron honeys of Black Sea Region, Turkey, J. Hazardous Materials, 156, 612-618.
  • Silva JFM, Souza MC, Matta SR, Andrade MR, Vidal FVN. (2006). Correlation analysis between phenolic levels of Brazilian propolis extracts and their antimicrobial and antioxidant activities, Food Chem., 99, 431–435.
  • Singleton VL, Rossi JL. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents, American Journal of Enology and Viticulture, 16, 144–158.
  • Socha R, Juszczak L, Pietryzk S, Fortuna T. (2009). Antioxidant activity and phenolic composition of herbhoneys, Food Chem., 103, 568-574.
  • Tezcan F, Kolayli S, Sahin H, Ulusoy E, Erim FB.(2011). Evaluation of organic acid, saccharide composition and antioxidant properties of some authentic Turkish honeys, J. Food and Nutrition Research, 50, 33-40.
  • Tosi EA, Rè E, Lucero H, Bulacio L. (2004). Effect of honey high temperature short-time heating on parameters related to quality, crystallization phenomena and fungal inibition, Lebensmittel Wissenschaft und Technologie, 37, 669-678.
  • Turhan I, Tetik N, Karhan M, Gurel F, Tavukcuoglu HR. (2008). Quality of honey influenced by thermal treatment, LWT- Food Science and Technology, 41, 1396-1399.
  • White JWJ, Winters K, Martin P, Rossmann A. (1998). Stable carbon isotope ratio analysis of honey: validation of internal standard procedure for worldwide application, J AOAC International,81, 610–619.
  • White JW, Willson RB, Maurizio A, Smith FG.(1975). Honey. A Comprehensive Survey. London: Heinemann, 608, ISBN 434-90270-5.
  • White JW, Winters K.(1989). Honey protein as internal standard for stable isotope ratio detection of adulteration of honey, J. Association Official Analytical Chemists, 72, 907-911.
  • Yıldız O and Alpaslan M.(2012). Properties of Rose Hip Marmalade, Food Technol. Biotechnol., 50 (1) 98–106 .
  • Yıldız O, Şahin H, Kara M, Aliyazıcıoğlu R, Tarhan Ö, Kolaylı S. (2010). Maillard Reaksiyonları ve Reaksiyon Ürünlerinin Gıdalardaki Önemi, Academic Food Journal, 8(6) 44-51.