Bombus terrestris’in Yayılma Performansı, Çiçek Tercihi ile İlişkisi ve Doğadaki Uyumu

Bombus kolonileri mor (arı UV-mavi) ve mavi (arı-mavi) çiçekler üzerinde öğrenilmemiş tercihleri konusunda önemli farklılıklar göstermektedir. Laboratuvar’da maviye göre mor’u doğuştan daha çok tercih eder. Bombus kolonileri doğada alan koşullarında verilen zaman diliminde daha fazla nektar işlemiştir. Bu korelasyon (rs = 0.82) güçlü olsa da %5 (p = 0.089) seviyesinde istatistiki olarak önemli olmamış, fakat %10 seviyesinde önemli görülmüştür. Bu yayılma performansındaki artış evrimsel açıdan anlamlıdır, çünkü çalışmanın yapıldığı lokal bölgede mor renkli çiçekler diğer renk çiçeklerden 4 kat daha fazla şeker (nektarın içinde) içermektedir. Gerçi mor çiçekleri çok tercih eden koloniler nektar toplamada daha etkili olmasına rağmen, besin bulma durumunda bu artış sayısal olarak kraliçe üretimine ve doğadaki genel uyuma tahmin edilir şekilde yansımamıştır

Colour Preferences in Relation to the Foraging Performance and Fitness of the Bumblebee Bombus terrestris

Bumblebee (Bombus terrestris) colonies showed significant variation in their unlearned preference for violet (bee UV-blue) over blue (bee blue) flowers. Bumblebee colonies with a higher average innate preference for violet (over blue) in the laboratory harvested more nectar per unit time under field conditions. Although this correlation was strong (rs=0.82), it narrowly missed statistical significance at the 5% level (p=0.089), but was significant at the 10% level. This increase in foraging performance appears to make evolutionary sense because, on average, violet flower species contain around four times the amount of sugar (in nectar) as flowers of any other colour in the local area. Interestingly, although colonies with a stronger preference for violet were more effective at nectar foraging, this increase in colony food availability was not predictably translated into investment in fitness, quantified as gyne (new queen) production.

___

  • Alcock, J. 1996. Das Verhalten der Tiere. Stuttgart: Gustav Fischer.
  • Baer, B. & Schmid-Hempel, P. 1999. Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature, 397, 151-154.
  • Banschbach, V. S. 1994. Colour association influences honey bee choice between sucrose concentrations. Journal of Comparative Physiology A - Neuroethology Sensory Neural and Behavioral Physiology, 175, 107-114.
  • Briscoe, A. D. & Chittka, L. 2001. The evolution of color vision in insects. Annual Review of Entomology, 46, 471-510.
  • Capaldi, E. A. & Dyer, F. C. 1999. The role of orientation flights on homing performance in honeybees. Journal of Experimental Biology, 202, 1655–1666.
  • Chittka, L. 1992. The color hexagon - a chromaticity diagram based on photoreceptor excitations as a generalized representation of color opponency. Journal of Comparative Physiology A - Neuroethology Sensory Neural and Behavioral Physiology, 170, 533-543.
  • Chittka, L. & Briscoe, A. 2001. Why sensory ecology needs to become more evolutionary - insect color vision as a case in point. In: Ecology of Sensing (Ed. by Barth, F. G. & Schmid, A.), pp. 19-37. Berlin: Springer-Verlag.
  • Chittka, L., Ings, T. C. & Raine, N. E. 2004. Chance and adaptation in the evolution of island bumblebee behaviour. Population Ecology, 46, 243-251.
  • Chittka, L. & Kevan, P. G. 2005. Flower colour as advertisement. In: Practical Pollination Biology. (Ed. by Dafni, A., Kevan, P. G. & Husband, B. C.), pp. 157-196. Cambridge, Ontario: Enviroquest Ltd.
  • Chittka, L. & Waser, N. M. 1997. Why red flowers are not invisible to bees. Israel Journal of Plant Sciences, 45, 169-183.
  • Chittka, L. & Wells, H. 2004. Color vision in bees: mechanisms, ecology and evolution. In: Complex Worlds from Simpler Nervous Systems (Ed. by Prete, F.), pp. 165-191. Cambridge: MIT Press.
  • Gilchrist, G. W. & Kingsolver, J. G. 2001. Is optimality over the hill? The fitness landscapes of idealized organisms. In: Adaptationism and Optimality (Ed. by Orzack, H. & Sober, E.), pp. 219-241. Cambridge: Cambridge University Press.
  • Giurfa, M., Nunez, J., Chittka, L. & Menzel, R. 1995. Colour preferences of flower-naive honeybees. Journal of Comparative Physiology A - Neuroethology Sensory Neural and Behavioral Physiology, 177, 247-259.
  • Goulson, D., Peat, J., Stout, J. C., Tucker, J., Darvill, B., Derwent, L. C. & Hughes, W. O. H. 2002. Can alloethism in workers of the bumblebee, Bombus terrestris, be explained in terms of
  • foraging efficiency? Animal Behaviour, 64, 123-130.
  • Gumbert, A. 2000. Color choices by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behavioral Ecology and Sociobiology, 48, 36-43.
  • Heinrich, B., Mudge, P. R. & Deringis, P. G. 1977. Laboratory analysis of flower constancy in foraging bumble bees: Bombus ternarius and B. terricola. Behavioral Ecology and Sociobiology, 2, 247-265.
  • Ings, T. C., Schikora, J. & Chittka, L. 2005. Bumblebees, humble pollinators or assiduous invaders? A population comparison of foraging performance in Bombus terrestris. Oecologia, 144, 508-516.
  • Irwin, R. E. & Brody, A. K. 1999. Nectar-robbing bumble bees reduce the fitness of Ipomopsis aggregata (Polemoniaceae). Ecology, 80, 1703-1712.
  • König, C. & Schmid-Hempel, P. 1995. Foraging activity and immunocompetence in workers of the bumble bee, Bombus terrestris L. Proceedings of the Royal Society of London Series B - Biological Sciences, 260, 225-227.
  • Lunau, K., Wacht, S. & Chittka, L. 1996. Colour choices of naive bumble bees and their implications for colour perception. Journal of Comparative Physiology A - Neuroethology Sensory Neural and Behavioral Physiology, 178, 477-489.
  • Mallon, E. B., Brockmann, A. & Schmid-Hempel, P. 2003. Immune response Proceedings of the Royal Society of London Series B - Biological Sciences, 270, 2471-2473. in insects.
  • Otterstatter, M. C., Gegear, R. J., Colla, S. R. & Thomson, J. D. 2005. Effects of parasitic mites and protozoa on the flower constancy and foraging rate of bumble bees. Behavioral Ecology and Sociobiology, 58, 383-389.
  • Pelletier, L. & McNeil, J. N. 2003. The effect of food supplementation on reproductive success in bumblebee field colonies. Oikos, 103, 688-694.
  • Schmid-Hempel, P. & Stauffer, H.-P. 1998. Parasites and flower choice of bumblebees. Anim. Behav., 55, 819-825.
  • Schmid-Hempel, R. & Schmid-Hempel, P. 1998. Colony performance and immunocompetence of a social insect, Bombus terrestris, in poor and variable environments. Functional Ecology, 12, 22-30.
  • Spaethe, J. & Weidenmüller, A. 2002. Size variation and foraging rate in bumblebees (Bombus terrestris). Insectes Sociaux, 49, 142-146.
  • Whitlock, M. C. 1997. Founder effects and peak shifts without genetic drift: adaptive peak shifts occur easily when environments fluctuate slightly. Evolution, 51, 1044–1048.