RESOLUTION OF AN INVERSE PARABOLIC PROBLEM USING SINC-GALERKIN METHOD

RESOLUTION OF AN INVERSE PARABOLIC PROBLEM USING SINC-GALERKIN METHOD

In this paper, a numerical method is proposed to solve an Inverse Heat Conduction Problem IHCP using noisy data based on Sinc-Galerkin method. A stable numerical solution is determined for the problem. To do this, we use a sensor located at a point inside the body and measure u x, t at a point x = a, where 0

___

  • [1] M. Abtahi, R. Pourgholi, A. Shidfar, Existence and uniqueness of solution for a two dimensional nonlinear inverse diffusion problem , Nonlinear Analysis: Theory, Methods & Applications, 74 (2011) 2462–2467
  • [2] O. M. Alifanov, Inverse Heat Transfer Problems, Springer, NewYork, 1994.
  • [3] P. Amore, A variational Sinc collocation method for strong-coupling problems, J. Phys. A: Math. Gen.39 (22) (2006) L349–L355.
  • [4] J. V. Beck, B. Blackwell, C.R.St. Clair, Inverse Heat Conduction: IllPosed Problems, WileyInterscience, NewYork, 1985.
  • [5] J.V. Beck, B. Blackwell, A. Haji-sheikh, Comparison of some inverse heat conduction methods using experimental data, Internat. J. Heat Mass Transfer 3 (1996) 3649–3657.
  • [6] J. V. Beck, Murio D. C., Combined function specification-regularization procedure for solution of inverse heat condition problem, AIAA J. 24 (1986) 180–185.
  • [7] J.M.G. Cabeza, J.A.M Garcia, A.C. Rodriguez, A Sequential Algorithm of Inverse Heat Conduction Problems Using Singular Value Decomposition, International Journal of Thermal Sciences 44 (2005) 235–244.
  • [8] J.R. Cannon, The solution of the heat equation subject to the specification of energy, Quart. Appl. Math 21 (1963) 155–160.
  • [9] J.R. Cannon, S.P. Eteva, J. Van de Hoek, A Galerkin procedure for the diffusion equation subject to the specification of mass, SIAM J. Numer. Anal. 24 (1987) 499–515.
  • [10] J.R. Cannon, J. Van de Hoek, The one phase stefan problem subject to energy, J. Math. Anal. Appl. 86 (1982) 281–292.
  • [11] V. Capasso, K. Kunisch, A reaction-diffusion system arising in modeling manevironment diseases, Quart. Appl. Math 46 (1988) 431–450.
  • [12] M. Dehghan, An inverse problem of finding a source parameter in a semilinear parabolic equation, Appl. Math. Model. 25 (2001) 743–754.
  • [13] M. Dehghan, Numerical techniques for a parabolic equation subject to an overspecified boundary condition, Appl. Math. Comput. 132 (2002) 299-313.
  • [14] M. Dehghan, Numerical solution of one-dimensional parabolic inverse problem, Appl. Math. Comput. 136 (2003) 333–344.
  • [15] L. Elden, A Note on the Computation of the Generalized Cross-validation Function for Ill-conditioned Least Squares Problems, BIT, 24 (1984) 467–472.
  • [16] G. H. Golub, M. Heath, G.Wahba, Generalized Cross-validation as a Method for Choosing a Good Ridge Parameter, Technometrics, 21 (2) (1979) 215–223.
  • [17] S. Koonprasert, K. Bowers, The Fully Sinc-Galerkin Method for Time-Dependent Boundary Conditions, Numerical Method for Partial Differential Equations, 20 (4) (2004) 494–526.
  • [18] P.C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev, 34 (1992) 561–80.
  • [19] C.-H. Huang, Y.-L. Tsai, A transient 3-D inverse problem in imaging the time- dependentlocal heat transfer coefficients for plate fin, Applied Thermal Engineering 25 (2005) 2478–2495.
  • [20] C. L. Lawson, R. J. Hanson, Solving Least Squares Problems, Philadelphia, PA: SIAM, (1995).
  • [21] J. Lund, K. Bowers, Sinc Methods for Quadrature and Differential Equations, Siam, Philadelphia, PA, 1992.
  • [22] J. Lund, C. Vogel, A Fully-Galerkin method for the solution of an inverse problem in a parabolic partial differential equation, Inverse Prole. 6 (1990) 205–217.
  • [23] L. Martin, L. Elliott, P. J. Heggs, D. B. Ingham, D. Lesnic, Wen X., Dual Reciprocity Boundary Element Method Solution of the Cauchy Problem for Helmholtz-type Equations with Variable Coefficients, Journal of sound and vibration, 297 (2006) 89–105.
  • [24] H. Molhem, R. Pourgholi, A numerical algorithm for solving a one-dimensional inverse heat conduction problem, Journal of Mathematics and Statistics 4 (1) (2008) 60–63.
  • [25] D. A. Murio, The Mollification Method and the Numerical Solution of Ill-Posed Problems, WileyInterscience, NewYork, 1993.
  • [26] D. A. Murio, J. R. Paloschi, Combined mollification-future temperature procedure for solution of inverse heat conduction problem, J. comput. Appl. Math., 23 (1988) 235–244.
  • [27] R. Pourgholi, N. Azizi, Y.S. Gasimov, F. Aliev, H.K. Khalafi, Removal of Numerical Instability in the Solution of an Inverse Heat Conduction Problem, Communications in Nonlinear Science and Numerical Simulation, 14 (6) (2009) 2664–2669.
  • [28] R. Pourgholi, M. Rostamian, A numerical technique for solving IHCPs using Tikhonov regularization method, Applied Mathematical Modelling, 34 (8) (2010) 2102–2110.
  • [29] R. Pourgholi, M. Rostamian, M. Emamjome, A numerical method for solving a nonlinear inverse parabolic problem, Inverse Problems in Science and Engineering, 18 (8) (2010), 1151–1164.
  • [30] Reza Pourgholi, Mortaza Abtahi, S. Hashem Tabasi, A Numerical Solution Of An Inverse Parabolic Problem, TWMS J. App. & Eng. Math., 2 (2) (2012), 195–209.
  • [31] A. Shidfar, R. Pourgholi, M. Ebrahimi, A numerical method for solving of a nonlinear inverse diffusion problem, Comput. Math. Appl. 52 (2006) 1021–1030.
  • [32] A. Shidfar, R. Zolfaghari, J. Damirchi, Application of Sinc-collocation method for solving an inverse problem,Journal of computational and Applied Mathematics, 233 (2009) 545–554.
  • [33] R. Smith, K. Bowers, A Sinc-Galerkin estimation of diffusivity in parabolic problems, Inverse Problem 9 (1993).
  • [34] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer, New York,1993.
  • [35] F. Stenger, A Sinc-Galerkin method of solution of boundary-value problems, Math. Comp. 33 (1979) 85-109.
  • [36] K.K. Sun, B.S Jung and W.l. Lee, An inverse estimation of surface temperature using the maximum entropy method , International Communication of Heat and Mass Transfer, 34 (2007) 37–44.
  • [37] M. Tadi, Inverse Heat Conduction Based on Boundary Measurement, Inverse Problems, 13 (1997) 1585–1605.
  • [38] M. Tatari, M. Dehghan, Identifying a control function in parabolic partial differential equations from overspecified boundary data, Computers and Mathematics with Applications, 53 (2007) 1933–1942.
  • [39] A.N. Tikhonov, V.Y. Arsenin, Solution of Ill-Posed Problems, V. H. Winston and Sons, Washington, DC, 1977.
  • [40] A.N. Tikhonov, V.Y. Arsenin, On the solution of ill-posed problems, New York, Wiley, 1977.
  • [41] G. Wahba, Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 59, SIAM, Philadelphia, 1990.
  • [42] E.T. Whittaker, On the functions which are represented by the expansions of the interpolation theory, Proc. Roy. Soc. Edinburg, 35 (1915) 181–194.
  • [43] J.M. Whittaker, Interpolation Function Theory, in: Cambridge Tracts in Mathematics and Mathematical Physics, vol. 33, Cambridge University Press, London, 1935.