ENERGY PRESERVING METHODS FOR VOLTERRA LATTICE EQUATION

ENERGY PRESERVING METHODS FOR VOLTERRA LATTICE EQUATION

We investigate linear energy preserving methods for the Volterra lattice equation as non-canonical Hamiltonian system. The averaged vector field method was applied to the Volterra lattice equation in bi-Hamiltonian form with quadratic and cubic Poisson brackets. Numerical results confirm the excellent long time preservation of the Hamiltonians and the polynomial integrals.

___

  • Chartier, P., Faou, E. and Murua, A., (2006), An algebraic approach to invariant preserving integra- tors: the case of quadratic and Hamiltonian invariants, Numer. Math., 103, 575–590.
  • Celledoni, E., McLachlan, R. I., Owren, B. and Quispel, G. R. W., (2010), Structure of B-series for Some Classes of Geometric Integrators, Found. Comput. Math., 10, 673–693.
  • Celledoni, E., McLachlan, R. I., McLaren, D. I., Owren, B., Quispel, G. R. W. and Wright, W.M., (2009), Energy-preserving Runge-Kutta methods, ESAIM: Mathematical Modelling and Numerical Analysis 43, 645-649.
  • Celledoni, E., Grimm, V., McLahlan, R. I., McLaren, D. I., O’Neale, D. R. J., Owren, B., and Quispel, G. R. W., (2009), Preserving energy resp. dissipation in numerical pdes, using the Average Vector Field method. Technical Report 7/2009, Norwegian University of Science and Technology Trondheim, Norway.
  • Cohen, D. and Hairer, E., (2011), Linear energy-preserving integrators for Poisson systems, BIT, 51, 91-101.
  • Courant, R., Friedrichs, K., and Lewy, H., (1967), On the partial difference equations of mathematical physics. IBM J., 11:215-234.
  • Dahlby, M. and Owren, B., (2010), A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci. Comput., 33, 2318-2340.
  • Ergen¸c, T. and Karas¨ozen, B., (2006), Poisson integrators for Volterra lattice equations, Applied Numerical Mathematics, 56, 879-887.
  • Faou, E., Hairer, E., and Pham, T. L., (2004), Energy conservation with non-symplectic methods: examples and counter-examples, BIT, 44, 699-709.
  • Furihata, D. and Matsuo, T., (2010), Discrete Variational Derivative Method: A Structure- Preserving Numerical Method for Partial Differential Equations, Chapman and Hall.
  • Gonzalez, O., (1996), Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6, 449-467 Hairer, E., Lubich, C., and Wanner, G., (2006), Geometric Numerical Integration. Structure- Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathe- matics 31, Springer-Verlag, Berlin, 2nd edition.
  • Hairer, E., (2010), Energy-preserving variant of collocation methods, J. Numer. Anal. Ind. Appl. Math., 5, 73-84.
  • Iavernaro, F. and Pace, B., (2007), s-stage trapezoidal methods for the conservation of Hamiltonian functions of polynomial type, AIP Conf. Proc., 936, 603–606.
  • Iavernaro F. and Trigiante, D., (2009), High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems, J. Numer. Anal. Ind. Appl. Math., 4, 87-101.
  • Kac, M. and van Moerbeke, P., (1975), On explicit soluble system of nonlinear differential equations related to certain Toda lattices, Advances in Mathematics, 16, 160–169.
  • Karas¨ozen, B., (2004), Poisson integrators, Mathematical Modelling and Computation 40, 1225–1244.
  • Leimkuhler, B. and Reich, S., (2004), Simulating Hamiltonian Dynamics, Cambridge Univesity Press.
  • McLachlan, R. I., Quispel, G. R. W. and Robidoux, N., (1999), Geometric integration using discrete gradients, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357, 1021-1045.
  • McLachlan, R. I., (2007), A new implementation of symplectic Runge-Kutta methods, SIAM J. Sci. Comput., 29, 1637–1649.
  • McLaren, D. I. and Quispel, G. R. W., (2004), Integral-preserving integrators, J. Phys. A: Math. Gen. 37, 489-495.
  • Quispel, G. R. W. and McLaren, D. I., (2008), A new class of energy-preserving numerical integration methods, J. Phys. A: Math. Theor. 41, 045206.
  • Quispel, G. R. W. and Capel, H. W., (1996), Solving ODEs numerically while preserving a first integral. Phys. Lett. A, 218, 223-228.
  • Sanz-Serna, J. M. and Calvo, M. P., (1994), Numerical Hamiltonian Problems, Chapman and Hall.
  • Suris, Y. B., (1997), A note on an integrable discretization of the nonlinear Schr¨odinger equation, Inverse Problems, 13, 1211–1236.